
Sign up to save your podcasts
Or


Fang and Weng were named in the Physics World Top 10 Breakthroughs of 2015 for their work on Weyl fermions, which are quasiparticles that they found lurking in their Weyl semimetal. Weyl fermions also have unique properties that could make them useful for creating high-speed electronic circuits among other applications.
Fang explains how his team of theorists uses mathematics and computer simulations to predict which materials are topological. He also explains how topological materials could be useful in creating quantum computers of the future. Weng then takes up the challenge of explaining just what a Weyl semimetal is and why it is home to Weyl fermions. He also explains how the topological material could be used to create another elusive quasiparticle – the Majorana fermion.
By Physics World4.1
7474 ratings
Fang and Weng were named in the Physics World Top 10 Breakthroughs of 2015 for their work on Weyl fermions, which are quasiparticles that they found lurking in their Weyl semimetal. Weyl fermions also have unique properties that could make them useful for creating high-speed electronic circuits among other applications.
Fang explains how his team of theorists uses mathematics and computer simulations to predict which materials are topological. He also explains how topological materials could be useful in creating quantum computers of the future. Weng then takes up the challenge of explaining just what a Weyl semimetal is and why it is home to Weyl fermions. He also explains how the topological material could be used to create another elusive quasiparticle – the Majorana fermion.

352 Listeners

295 Listeners

837 Listeners

2,875 Listeners

555 Listeners

524 Listeners

232 Listeners

79 Listeners

4,149 Listeners

2,343 Listeners

498 Listeners

324 Listeners

392 Listeners

492 Listeners

54 Listeners