
Sign up to save your podcasts
Or
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at construction"). But this prevents higher-order functions like map, which need to repeat a computation involving a variable f to be mapped over the elements of a list. The solution is to allow schematic definition of terms, using schema variables ranging over closed terms.
5
1717 ratings
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at construction"). But this prevents higher-order functions like map, which need to repeat a computation involving a variable f to be mapped over the elements of a list. The solution is to allow schematic definition of terms, using schema variables ranging over closed terms.
273 Listeners
90,978 Listeners
30,773 Listeners
106 Listeners
4,131 Listeners
36 Listeners
16,002 Listeners
35 Listeners
13 Listeners
10,745 Listeners
3,324 Listeners
59 Listeners
30 Listeners