Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。
今天的主题是:Chain-of-Retrieval Augmented Generation
Summary
This paper introduces Chain-of-Retrieval Augmented Generation (CoRAG), a method that allows language models to iteratively retrieve and reason over relevant information. Unlike traditional RAG, CoRAG dynamically reformulates queries based on the evolving information state. To train CoRAG, the authors use rejection sampling to generate intermediate retrieval chains and fine-tune models to predict the next query, answer, and final response. The effectiveness of CoRAG is validated across benchmarks, showing significant improvements in multi-hop question answering. The paper explores test-time scaling strategies, demonstrating how to balance performance and computational cost by adjusting the number of retrieval steps. CoRAG achieves new state-of-the-art results on knowledge-intensive tasks, highlighting its potential for building more factual and trustworthy AI systems.
本论文提出了 Chain-of-Retrieval Augmented Generation(CoRAG),一种让语言模型能够迭代检索并推理相关信息的方法。与传统的 RAG 不同,CoRAG 动态重构查询,根据不断更新的信息状态调整检索策略。
在训练过程中,作者采用拒绝采样(rejection sampling)生成中间检索链,并微调模型以预测下一个查询、答案和最终回复。实验结果表明,CoRAG 在多个基准测试上取得了显著提升,特别是在多跳问答任务中表现优异。
此外,研究探讨了测试时的扩展策略,通过调整检索步数,在性能与计算成本之间取得平衡。CoRAG 在知识密集型任务上达到了最新的SOTA(state-of-the-art)水平,展现出构建更具事实性和可靠性的 AI 系统的潜力。
原文链接:https://arxiv.org/abs/2501.14342