
Sign up to save your podcasts
Or


In this episode, I outline the argument for why the proof-theoretic ordinal (in the sense of Rathjen, as presented last episode) is epsilon-0. My explanation has something of a hole, in explaining how one would go about deriving induction for ordinals strictly less than epsilon-0 in Peano Arithmetic. To help paper over this hole a little, I discuss a really nice recent exposition of encoding ordinals in Agda.
By Aaron Stump5
1919 ratings
In this episode, I outline the argument for why the proof-theoretic ordinal (in the sense of Rathjen, as presented last episode) is epsilon-0. My explanation has something of a hole, in explaining how one would go about deriving induction for ordinals strictly less than epsilon-0 in Peano Arithmetic. To help paper over this hole a little, I discuss a really nice recent exposition of encoding ordinals in Agda.

289 Listeners

4,175 Listeners

7,231 Listeners

570 Listeners

505 Listeners

15,995 Listeners

13 Listeners

29 Listeners

63 Listeners