
Sign up to save your podcasts
Or


Dr. Sebastien Bubeck is a mathematician and a senior researcher in the Machine Learning and Optimization group at Microsoft Research. He’s also a self-proclaimed “bandit” who claims that, despite all the buzz around AI, it’s still a science in its infancy. That’s why he’s devoted his career to advancing the mathematical foundations behind the machine learning algorithms behind AI.
Today, Dr. Bubeck explains the difficulty of the multi-armed bandit problem in the context of a parameter- and data-rich online world. He also discusses a host of topics from randomness and convex optimization to metrical task systems and log n competitiveness to the surprising connection between Gaussian kernels and what he calls some of the most beautiful objects in mathematics.
By Researchers across the Microsoft research community4.8
8080 ratings
Dr. Sebastien Bubeck is a mathematician and a senior researcher in the Machine Learning and Optimization group at Microsoft Research. He’s also a self-proclaimed “bandit” who claims that, despite all the buzz around AI, it’s still a science in its infancy. That’s why he’s devoted his career to advancing the mathematical foundations behind the machine learning algorithms behind AI.
Today, Dr. Bubeck explains the difficulty of the multi-armed bandit problem in the context of a parameter- and data-rich online world. He also discusses a host of topics from randomness and convex optimization to metrical task systems and log n competitiveness to the surprising connection between Gaussian kernels and what he calls some of the most beautiful objects in mathematics.

341 Listeners

155 Listeners

213 Listeners

306 Listeners

90 Listeners

505 Listeners

478 Listeners

56 Listeners

133 Listeners

95 Listeners

124 Listeners

589 Listeners

26 Listeners

35 Listeners

136 Listeners