Microsoft Research Podcast

101 - Going meta: learning algorithms and the self-supervised machine with Dr. Philip Bachman


Listen Later

Deep learning methodologies like supervised learning have been very successful in training machines to make predictions about the world. But because they’re so dependent upon large amounts of human-annotated data, they’ve been difficult to scale. Dr. Phil Bachman, a researcher at MSR Montreal, would like to change that, and he’s working to train machines to collect, sort and label their own data, so people don’t have to.

Today, Dr. Bachman gives us an overview of the machine learning landscape and tells us why it’s been so difficult to sort through noise and get to useful information. He also talks about his ongoing work on Deep InfoMax, a novel approach to self-supervised learning, and reveals what a conversation about ML classification problems has to do with Harrison Ford’s face.

https://www.microsoft.com/research

 

...more
View all episodesView all episodes
Download on the App Store

Microsoft Research PodcastBy Researchers across the Microsoft research community

  • 4.8
  • 4.8
  • 4.8
  • 4.8
  • 4.8

4.8

80 ratings


More shows like Microsoft Research Podcast

View all
The Daily by The New York Times

The Daily

113,460 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

522 Listeners

Hard Fork by The New York Times

Hard Fork

5,548 Listeners

No Priors: Artificial Intelligence | Technology | Startups by Conviction

No Priors: Artificial Intelligence | Technology | Startups

142 Listeners