
Sign up to save your podcasts
Or
This week we have a FreeBSD Foundation development update, tell you about sprinkling in the TrueOS project, Dynamic WDS & a whole lot more!
Eliminate explicit specification of protocol in tests and loops over protocol. We only support SSHv2 now.
FreeBSD runs on many embedded boards that provide a USB target or USB On-the-Go (OTG) interface. This allows the embedded target to act as a USB device, and present one or more interfaces (USB device classes) to a USB host. That host could be running FreeBSD, Linux, Mac OS, Windows, Android, or another operating system. USB device classes include audio input or output (e.g. headphones), mass storage (USB flash drives), human interface device (keyboards, mice), communications (Ethernet adapters), and many others.
The Foundation awarded a project grant to Edward Tomasz Napierała to develop a USB mass storage target driver, using the FreeBSD CAM Target Layer (CTL) as a backend. This project allows FreeBSD running on an embedded platform, such as a BeagleBone Black or Raspberry Pi Zero, to emulate a USB mass storage target, commonly known as a USB flash stick. The backing storage for the emulated mass storage target is on the embedded board’s own storage media. It can be configured at runtime using the standard CTL configuration mechanism – the ctladm(8) utility, or the ctl.conf(5) file.
The FreeBSD target can now present a mass storage interface, a serial interface (for a console on the embedded system), and an Ethernet interface for network access. A typical usage scenario for the mass storage interface is to provide users with documentation and drivers that can be accessed from their host system. This makes it easier for new users to interact with the embedded FreeBSD board, especially in cases where the host operating system may require drivers to access all of the functionality, as with Windows and OS X.
The much-abused TrueOS build server is experiencing some technical difficulties, slowing down building new packages and releasing updates. After some investigation, one problem seemed to be a bug with the Poudriere port building software. After updating builders to the new version, some of the instability is resolved. Thankfully, we won’t have to rely on this server so much, because…
A TrueOS/Lumina contributor is donating a new(ish) server to the project. Special thanks to TrueOS contributor/developer q5sys for the awesome new hardware!
Preview: UNSTABLE and Upcoming TrueOS STABLE update
A fresh UNSTABLE release is dropping today, with a few key changes:
Nvidia/graphics driver detection fixes.
The text installer has been removed. It was broken and unmaintained, so it is time to remove it.
I sat down recently to figure out how to get dynamic WDS working on FreeBSD-HEAD. It's been in FreeBSD since forever, and it in theory should actually have just worked, but it's extremely not documented in any useful way. It's basically the same technology in earlier Apple Airports (before it grew into what the wireless tech world calls "Proxy-STA") and is what the "extender" technology on Qualcomm Atheros chipsets implement.
The big note here is that there's not enough MAC addresses to say "please send this frame to a station MAC address, but then have them forward it to another MAC address attached behind it in a bridge." That would require 4 mac addresses in the 802.11 header, which we don't get.
A friend of mine and I couldn’t understand why some people were having so much trouble; the material seemed like common sense. The Feynman Method was the only tool we needed.
The Feynman Method failed us on the last project: the design of a divider, a real-world-scale project an order of magnitude more complex than anything we’d been asked to tackle before.
I understand now why half the class struggled with the earlier assignments. Without an explanation of how to systematically approach problems, anyone who didn’t intuitively grasp the correct solution was in for a semester of frustration. People who were, like me, above average but not great, skated through most of the class and either got lucky or wasted a huge chunk of time on the final project. I’ve even seen people talented enough to breeze through the entire degree without ever running into a problem too big to intuitively understand; those people have a very bad time when they run into a 10 million line codebase in the real world. The more talented the engineer, the more likely they are to hit a debugging wall outside of school.
It’s one of the most fundamental skills in engineering: start at the symptom of a problem and trace backwards to find the source. It takes, at most, half an hour to teach the absolute basics – and even that little bit would be enough to save a significant fraction of those who wash out and switch to non-STEM majors.
Why do we leave material out of classes and then fail students who can’t figure out that material for themselves? Why do we make the first couple years of an engineering major some kind of hazing ritual, instead of simply teaching people what they need to know to be good engineers? For all the high-level talk about how we need to plug the leaks in our STEM education pipeline, not only are we not plugging the holes, we’re proud of how fast the pipeline is leaking.
I now have a pNFS server that I think is ready for testing/evaluation. It is basically a patched FreeBSD-current kernel plus nfsd daemon.
A Plan B pNFS service consists of a single MetaData Server (MDS) and K Data Servers (DS), all of which would be recent FreeBSD systems. Clients will mount the MDS as they would a single NFS server. When files are created, the MDS creates a file tree identical to what a single NFS server creates, except that all the regular (VREG) files will be empty. As such, if you look at the exported tree on the MDS directly on the MDS server (not via an NFS mount), the files will all be of size == 0. Each of these files will also have two extended attributes in the system attribute name space:
For each regular (VREG) file, the MDS creates a data storage file on one of the K DSs, in one of the dsNN directories. The name of this file is the file handle of the file on the MDS in hexadecimal. The DSs use 20 subdirectories named "ds0" to "ds19" so that no one directory gets too large.
Peter - Jails
Andrew - Languages and University Courses
Steve - TrueOS and Bootloader
Ben - ZFS questions
Steve - Linux Emulation
4.9
8989 ratings
This week we have a FreeBSD Foundation development update, tell you about sprinkling in the TrueOS project, Dynamic WDS & a whole lot more!
Eliminate explicit specification of protocol in tests and loops over protocol. We only support SSHv2 now.
FreeBSD runs on many embedded boards that provide a USB target or USB On-the-Go (OTG) interface. This allows the embedded target to act as a USB device, and present one or more interfaces (USB device classes) to a USB host. That host could be running FreeBSD, Linux, Mac OS, Windows, Android, or another operating system. USB device classes include audio input or output (e.g. headphones), mass storage (USB flash drives), human interface device (keyboards, mice), communications (Ethernet adapters), and many others.
The Foundation awarded a project grant to Edward Tomasz Napierała to develop a USB mass storage target driver, using the FreeBSD CAM Target Layer (CTL) as a backend. This project allows FreeBSD running on an embedded platform, such as a BeagleBone Black or Raspberry Pi Zero, to emulate a USB mass storage target, commonly known as a USB flash stick. The backing storage for the emulated mass storage target is on the embedded board’s own storage media. It can be configured at runtime using the standard CTL configuration mechanism – the ctladm(8) utility, or the ctl.conf(5) file.
The FreeBSD target can now present a mass storage interface, a serial interface (for a console on the embedded system), and an Ethernet interface for network access. A typical usage scenario for the mass storage interface is to provide users with documentation and drivers that can be accessed from their host system. This makes it easier for new users to interact with the embedded FreeBSD board, especially in cases where the host operating system may require drivers to access all of the functionality, as with Windows and OS X.
The much-abused TrueOS build server is experiencing some technical difficulties, slowing down building new packages and releasing updates. After some investigation, one problem seemed to be a bug with the Poudriere port building software. After updating builders to the new version, some of the instability is resolved. Thankfully, we won’t have to rely on this server so much, because…
A TrueOS/Lumina contributor is donating a new(ish) server to the project. Special thanks to TrueOS contributor/developer q5sys for the awesome new hardware!
Preview: UNSTABLE and Upcoming TrueOS STABLE update
A fresh UNSTABLE release is dropping today, with a few key changes:
Nvidia/graphics driver detection fixes.
The text installer has been removed. It was broken and unmaintained, so it is time to remove it.
I sat down recently to figure out how to get dynamic WDS working on FreeBSD-HEAD. It's been in FreeBSD since forever, and it in theory should actually have just worked, but it's extremely not documented in any useful way. It's basically the same technology in earlier Apple Airports (before it grew into what the wireless tech world calls "Proxy-STA") and is what the "extender" technology on Qualcomm Atheros chipsets implement.
The big note here is that there's not enough MAC addresses to say "please send this frame to a station MAC address, but then have them forward it to another MAC address attached behind it in a bridge." That would require 4 mac addresses in the 802.11 header, which we don't get.
A friend of mine and I couldn’t understand why some people were having so much trouble; the material seemed like common sense. The Feynman Method was the only tool we needed.
The Feynman Method failed us on the last project: the design of a divider, a real-world-scale project an order of magnitude more complex than anything we’d been asked to tackle before.
I understand now why half the class struggled with the earlier assignments. Without an explanation of how to systematically approach problems, anyone who didn’t intuitively grasp the correct solution was in for a semester of frustration. People who were, like me, above average but not great, skated through most of the class and either got lucky or wasted a huge chunk of time on the final project. I’ve even seen people talented enough to breeze through the entire degree without ever running into a problem too big to intuitively understand; those people have a very bad time when they run into a 10 million line codebase in the real world. The more talented the engineer, the more likely they are to hit a debugging wall outside of school.
It’s one of the most fundamental skills in engineering: start at the symptom of a problem and trace backwards to find the source. It takes, at most, half an hour to teach the absolute basics – and even that little bit would be enough to save a significant fraction of those who wash out and switch to non-STEM majors.
Why do we leave material out of classes and then fail students who can’t figure out that material for themselves? Why do we make the first couple years of an engineering major some kind of hazing ritual, instead of simply teaching people what they need to know to be good engineers? For all the high-level talk about how we need to plug the leaks in our STEM education pipeline, not only are we not plugging the holes, we’re proud of how fast the pipeline is leaking.
I now have a pNFS server that I think is ready for testing/evaluation. It is basically a patched FreeBSD-current kernel plus nfsd daemon.
A Plan B pNFS service consists of a single MetaData Server (MDS) and K Data Servers (DS), all of which would be recent FreeBSD systems. Clients will mount the MDS as they would a single NFS server. When files are created, the MDS creates a file tree identical to what a single NFS server creates, except that all the regular (VREG) files will be empty. As such, if you look at the exported tree on the MDS directly on the MDS server (not via an NFS mount), the files will all be of size == 0. Each of these files will also have two extended attributes in the system attribute name space:
For each regular (VREG) file, the MDS creates a data storage file on one of the K DSs, in one of the dsNN directories. The name of this file is the file handle of the file on the MDS in hexadecimal. The DSs use 20 subdirectories named "ds0" to "ds19" so that no one directory gets too large.
Peter - Jails
Andrew - Languages and University Courses
Steve - TrueOS and Bootloader
Ben - ZFS questions
Steve - Linux Emulation
1,971 Listeners
272 Listeners
283 Listeners
265 Listeners
215 Listeners
154 Listeners
65 Listeners
189 Listeners
181 Listeners
44 Listeners
21 Listeners
135 Listeners
92 Listeners
29 Listeners
47 Listeners