HuggingFace 每日AI论文速递

2025.02.04 | DAAs性能提升,OmniHuman动画优化。


Listen Later

本期的 20 篇论文如下:

[00:26] 🤔 The Differences Between Direct Alignment Algorithms are a Blur(直接对齐算法的差异逐渐模糊)

[01:07] 🤖 OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models(OmniHuman-1:重新思考单阶段条件式人体动画模型的放大)

[01:48] 💡 Process Reinforcement through Implicit Rewards(基于隐式奖励的过程强化)

[02:36] ⚖ Preference Leakage: A Contamination Problem in LLM-as-a-judge(偏好泄露:LLM即评判器中的污染问题)

[03:14] 🛡 SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model(SafeRAG:评估大语言模型检索增强生成中的安全性)

[04:02] 🚀 FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation(FastKV:通过令牌选择性传播实现快速长文本处理的KV缓存压缩)

[04:50] 🌍 AIN: The Arabic INclusive Large Multimodal Model(AIN:阿拉伯语包容性大型多模态模型)

[05:39] 🧠 DeepRAG: Thinking to Retrieval Step by Step for Large Language Models(DeepRAG:面向大型语言模型的逐步思考检索)

[06:30] 🤔 MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models(MM-IQ:多模态模型中类人抽象与推理能力的基准测试)

[07:19] 🛡 Almost Surely Safe Alignment of Large Language Models at Inference-Time(大语言模型在推理时近乎完全安全的对齐)

[08:04] 🤔 ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning(ZebraLogic:关于大型语言模型在逻辑推理中的扩展极限)

[08:49] 🤔 The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles(跳跃的推理曲线?追踪GPT-[n]和o-[n]模型在多模态谜题上的推理性能演变)

[09:38] 🎮 Improving Transformer World Models for Data-Efficient RL(改进Transformer世界模型以实现数据高效的强化学习)

[10:22] 💡 Improved Training Technique for Latent Consistency Models(改进的潜在一致性模型训练技术)

[11:07] 🧠 Scaling Embedding Layers in Language Models(语言模型中扩展嵌入层)

[11:42] 🎨 SliderSpace: Decomposing the Visual Capabilities of Diffusion Models(SliderSpace:解构扩散模型的视觉能力)

[12:24] 🤔 PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models(无需博士知识:大型语言模型的推理挑战)

[13:08] 🧠 Lifelong Sequential Knowledge Editing without Model Degradation(终身序列知识编辑,且不降低模型性能)

[13:46] 🔬 Current Pathology Foundation Models are unrobust to Medical Center Differences(当前病理学基础模型对于医疗中心差异不具有鲁棒性)

[14:37] 🫀 A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation(U-Net改进模型在腹膜后肿瘤分割中的性能研究)

【关注我们】

您还可以在以下平台找到我们,获得播客内容以外更多信息

小红书: AI速递

...more
View all episodesView all episodes
Download on the App Store

HuggingFace 每日AI论文速递By duan

  • 5
  • 5
  • 5
  • 5
  • 5

5

2 ratings


More shows like HuggingFace 每日AI论文速递

View all
商业就是这样 by 商业就是这样

商业就是这样

291 Listeners

声动早咖啡 by 声动活泼

声动早咖啡

291 Listeners

42章经 by KaiQu

42章经

12 Listeners

李诞 by 李诞

李诞

253 Listeners