
Sign up to save your podcasts
Or
DragonflyBSD 4.8.1 has been released, we explore how the X11 clipboard works, and look at OpenBSD gaming resources.
In the last month I started with upstream of the code for sanitizers: the common layer and ubsan. I worked also on the elimination of unexpected failures in LLVM and Clang. I've managed to achieve, with a pile of local patches, the number of 0 unexpected bugs within LLVM (check-llvm) and 3 unexpected bugs within Clang (check-clang) (however these ones were caused by hardcoded environment -lstdc++ vs -lc++). The number of failures in sanitizers (check-sanitizer) is also low, it's close to zero.
In order to achieve the goals of testability concerning the LLVM projects, I had to prepare a new pkgsrc-wip package called llvm-all-in-one that contains 12 active LLVM projects within one tree. The set of these projects is composed of: llvm, clang, compiler-rt, libcxx, libcxxabi, libunwind, test-suite, openmp, llgo, lld, lldb, clang-tools-extra. These were required to build and execute test-suites in the LLVM's projects. Ideally the tests should work in standalone packages - built out-of-LLVM-sources - and with GCC/Clang, however the real life is less bright and this forced me to use Clang as the system compiler an all-in-one package in order to develop the work environment with the ability to build and execute unit tests.
The LLVM JIT API is the last cause of unexpected failures in check-llvm. This breaks MCJIT, ORCJIT and ExecutionEngine libraries and causes around 200 unexpected failures within tests.
I've upstreamed a patch that enables ubsan and asan on Clang's frontend for NetBSD/amd64. This support isn't complete, and requires sanitizers' support code upstreamed to compiler-rt.
This means that ubsan, asan and the rest of the specific sanitizers wait in queue.
These bugs are not strictly real bugs, but they were introducing needless differences with other modern POSIX systems. The fixes were introduced by Christos Zoulas and backported to NetBSD-8.
I have decided not to open new issues in with the coming month and focus on upstreaming the remaining LLVM code. The roadmap for the next month is to continue working on the goals of the previous months. std::call_once is an example that every delayed bug keeps biting again and again in future.
+Updates by dev:
The University of California's Berkeley Software Distribution (BSD) has been the catalyst for much of the innovative work done with the UNIX operating system in both the research and commercial sectors. Encompassing over 150 Mbytes (and growing) of cutting-edge operating systems, networking, and applications software, BSD is a fully functional and nonproprietary complete operating systems software distribution (see Figure 1). In fact, every version of UNIX available from every vendor contains at least some Berkeley UNIX code, particularly in the areas of filesystems and networking technologies. However, unless one could pay the high cost of site licenses and equipment, access to this software was simply not within the means of most individual programmers and smaller research groups.
First things first, in X11 land, “clipboards” are called “selections”.
How are selections identified?
There are three “standard” selection names:
Program 1: Query selection owners
Content type and conversion
Program 2: Get clipboard as UTF-8
Program 3: Owning a selection
Program 4: Content type TARGETS
Handling binary data using xclip
Large amounts of data
Clipboard managers
Summary
The TrueOS project is always looking for community contribution. Documentation changes are a great way for users to not only make a solid contribution to the project, but learn more about it too! Over the last few months, many users have asked for both simple and detailed instructions on making documentation changes. These are now added to the TrueOS handbook in the Contributing to TrueOS section.
A GitHub account is required to submit patches to the TrueOS docs. Open a web browser and sign in to GitHub or make a new account. When making a new account, be sure to use an often checked email address, as all communication regarding patches and pull requests are sent to this address. Navigate to the trueos-docs GitHub repository. Click on the trueos-handbook directory to view all the documentation files. Open the .rst file corresponding to the chapter needing an update. The chapter names are reflected in the title of the .rst files. For example, open install.rst to fix an error spotted in handbook chapter 3: “Install”. This first image shows the trueos-docs repository and the contents of the trueos-handbook directory
When making a simple change, it is recommended to avoid adjusting the specific formatting elements and instead work within or around them. Once satisfied, scroll to the bottom of the page and write a detailed commit summary of the new changes. Click Propose file change (green button), then Create pull request to submit the changes to the project. GitHub then does an automated merge check. Click Create pull request again to submit the change to the repository. In the final step, a developer or project committer reviews the changes, merging them into the project or asking for more changes as necessary.
To learn more about the underlying structure of TrueOS documentation like the Sphinx Documentation Generator and reStructuredText markup, browse the Advanced Documentation Changes section of the TrueOS handbook. This section also contains instructions for forking the repository and configuring a local clone, build testing, updating the translation files, and other useful information. The Sphinx website is also a valuable resource.
Over a decade ago, while standing naked and vulnerable in the comfort of my steaming hot shower, I gathered my thoughts as humans typically attempt to do in the wee hours of the morning. Thoughts of a post-exploitation exercise raced in my mind, the same thoughts that made sleeping the night before difficult. If only I could inject into Apache some code that would allow me to hook into its parsing engine without requiring persistance. Putting a file-backed entry into /proc/pid/maps would tip off the security team to a compromise.
I’ve talked to a whole bunch of folks who say things like “I’m a junior programmer. I’m looking for a way to help. I have no specific expertise, but I’m willing to learn.” Today, I present such junior programmers with an opportunity. An opportunity for you to learn skills that will be incredibly valuable to your career, and will simultaneously expand your career opportunities.
4.9
8989 ratings
DragonflyBSD 4.8.1 has been released, we explore how the X11 clipboard works, and look at OpenBSD gaming resources.
In the last month I started with upstream of the code for sanitizers: the common layer and ubsan. I worked also on the elimination of unexpected failures in LLVM and Clang. I've managed to achieve, with a pile of local patches, the number of 0 unexpected bugs within LLVM (check-llvm) and 3 unexpected bugs within Clang (check-clang) (however these ones were caused by hardcoded environment -lstdc++ vs -lc++). The number of failures in sanitizers (check-sanitizer) is also low, it's close to zero.
In order to achieve the goals of testability concerning the LLVM projects, I had to prepare a new pkgsrc-wip package called llvm-all-in-one that contains 12 active LLVM projects within one tree. The set of these projects is composed of: llvm, clang, compiler-rt, libcxx, libcxxabi, libunwind, test-suite, openmp, llgo, lld, lldb, clang-tools-extra. These were required to build and execute test-suites in the LLVM's projects. Ideally the tests should work in standalone packages - built out-of-LLVM-sources - and with GCC/Clang, however the real life is less bright and this forced me to use Clang as the system compiler an all-in-one package in order to develop the work environment with the ability to build and execute unit tests.
The LLVM JIT API is the last cause of unexpected failures in check-llvm. This breaks MCJIT, ORCJIT and ExecutionEngine libraries and causes around 200 unexpected failures within tests.
I've upstreamed a patch that enables ubsan and asan on Clang's frontend for NetBSD/amd64. This support isn't complete, and requires sanitizers' support code upstreamed to compiler-rt.
This means that ubsan, asan and the rest of the specific sanitizers wait in queue.
These bugs are not strictly real bugs, but they were introducing needless differences with other modern POSIX systems. The fixes were introduced by Christos Zoulas and backported to NetBSD-8.
I have decided not to open new issues in with the coming month and focus on upstreaming the remaining LLVM code. The roadmap for the next month is to continue working on the goals of the previous months. std::call_once is an example that every delayed bug keeps biting again and again in future.
+Updates by dev:
The University of California's Berkeley Software Distribution (BSD) has been the catalyst for much of the innovative work done with the UNIX operating system in both the research and commercial sectors. Encompassing over 150 Mbytes (and growing) of cutting-edge operating systems, networking, and applications software, BSD is a fully functional and nonproprietary complete operating systems software distribution (see Figure 1). In fact, every version of UNIX available from every vendor contains at least some Berkeley UNIX code, particularly in the areas of filesystems and networking technologies. However, unless one could pay the high cost of site licenses and equipment, access to this software was simply not within the means of most individual programmers and smaller research groups.
First things first, in X11 land, “clipboards” are called “selections”.
How are selections identified?
There are three “standard” selection names:
Program 1: Query selection owners
Content type and conversion
Program 2: Get clipboard as UTF-8
Program 3: Owning a selection
Program 4: Content type TARGETS
Handling binary data using xclip
Large amounts of data
Clipboard managers
Summary
The TrueOS project is always looking for community contribution. Documentation changes are a great way for users to not only make a solid contribution to the project, but learn more about it too! Over the last few months, many users have asked for both simple and detailed instructions on making documentation changes. These are now added to the TrueOS handbook in the Contributing to TrueOS section.
A GitHub account is required to submit patches to the TrueOS docs. Open a web browser and sign in to GitHub or make a new account. When making a new account, be sure to use an often checked email address, as all communication regarding patches and pull requests are sent to this address. Navigate to the trueos-docs GitHub repository. Click on the trueos-handbook directory to view all the documentation files. Open the .rst file corresponding to the chapter needing an update. The chapter names are reflected in the title of the .rst files. For example, open install.rst to fix an error spotted in handbook chapter 3: “Install”. This first image shows the trueos-docs repository and the contents of the trueos-handbook directory
When making a simple change, it is recommended to avoid adjusting the specific formatting elements and instead work within or around them. Once satisfied, scroll to the bottom of the page and write a detailed commit summary of the new changes. Click Propose file change (green button), then Create pull request to submit the changes to the project. GitHub then does an automated merge check. Click Create pull request again to submit the change to the repository. In the final step, a developer or project committer reviews the changes, merging them into the project or asking for more changes as necessary.
To learn more about the underlying structure of TrueOS documentation like the Sphinx Documentation Generator and reStructuredText markup, browse the Advanced Documentation Changes section of the TrueOS handbook. This section also contains instructions for forking the repository and configuring a local clone, build testing, updating the translation files, and other useful information. The Sphinx website is also a valuable resource.
Over a decade ago, while standing naked and vulnerable in the comfort of my steaming hot shower, I gathered my thoughts as humans typically attempt to do in the wee hours of the morning. Thoughts of a post-exploitation exercise raced in my mind, the same thoughts that made sleeping the night before difficult. If only I could inject into Apache some code that would allow me to hook into its parsing engine without requiring persistance. Putting a file-backed entry into /proc/pid/maps would tip off the security team to a compromise.
I’ve talked to a whole bunch of folks who say things like “I’m a junior programmer. I’m looking for a way to help. I have no specific expertise, but I’m willing to learn.” Today, I present such junior programmers with an opportunity. An opportunity for you to learn skills that will be incredibly valuable to your career, and will simultaneously expand your career opportunities.
1,971 Listeners
272 Listeners
283 Listeners
265 Listeners
215 Listeners
154 Listeners
65 Listeners
189 Listeners
181 Listeners
44 Listeners
21 Listeners
135 Listeners
92 Listeners
29 Listeners
47 Listeners