
Sign up to save your podcasts
Or


When light from space enters Earth’s atmosphere, it is distorted and displaced, something our eyes perceive as “twinkling.” Adaptive optics can remove a great deal of this distortion, essentially restoring much of the detail we’ve been robbed off in our view of the stars and galaxies. Dr. Max, a world-renowned pioneer in this technique, shows us how modern lasers allow her to do this very precisely. And she discusses how this technique is giving us sharper views of such cosmic events as the collision of nearby galaxies.
Speaker: Dr. Claire Max (University of California Observatories)
Oct. 3, 2018
By Silicon Valley Astronomy Lectures4.7
1212 ratings
When light from space enters Earth’s atmosphere, it is distorted and displaced, something our eyes perceive as “twinkling.” Adaptive optics can remove a great deal of this distortion, essentially restoring much of the detail we’ve been robbed off in our view of the stars and galaxies. Dr. Max, a world-renowned pioneer in this technique, shows us how modern lasers allow her to do this very precisely. And she discusses how this technique is giving us sharper views of such cosmic events as the collision of nearby galaxies.
Speaker: Dr. Claire Max (University of California Observatories)
Oct. 3, 2018

349 Listeners

1,357 Listeners

319 Listeners

844 Listeners

2,887 Listeners

564 Listeners

237 Listeners

1,070 Listeners

2,360 Listeners

323 Listeners

389 Listeners

108 Listeners

153 Listeners

70 Listeners

507 Listeners