
Sign up to save your podcasts
Or


Convolutional neural networks are a machine learning tool that uses layers of convolution and pooling to process and classify inputs. CNNs are useful for identifying objects in images and video. In this episode, we focus on the application of convolutional neural networks to image and video recognition and classification.
Matt Zeiler is the CEO of Clarifai, an API for image and video recognition. Matt takes us through the basics of a convolutional neural network–you don’t need any background in machine learning to understand the content of the episode. He also discusses the subjective aspects of image and video recognition, and some of the tactics Clarifai has explored. This is far from a solved problem.
Matt also discusses the infrastructure of Clarifai–how they use Kubernetes, how models are deployed, and how models are updated.
The post Convolutional Neural Networks with Matt Zeiler appeared first on Software Engineering Daily.
By Machine Learning Archives - Software Engineering Daily4.4
6969 ratings
Convolutional neural networks are a machine learning tool that uses layers of convolution and pooling to process and classify inputs. CNNs are useful for identifying objects in images and video. In this episode, we focus on the application of convolutional neural networks to image and video recognition and classification.
Matt Zeiler is the CEO of Clarifai, an API for image and video recognition. Matt takes us through the basics of a convolutional neural network–you don’t need any background in machine learning to understand the content of the episode. He also discusses the subjective aspects of image and video recognition, and some of the tactics Clarifai has explored. This is far from a solved problem.
Matt also discusses the infrastructure of Clarifai–how they use Kubernetes, how models are deployed, and how models are updated.
The post Convolutional Neural Networks with Matt Zeiler appeared first on Software Engineering Daily.

291 Listeners

477 Listeners

624 Listeners

588 Listeners

284 Listeners

301 Listeners

214 Listeners

342 Listeners

768 Listeners

987 Listeners

268 Listeners

211 Listeners

203 Listeners

194 Listeners

209 Listeners