
Sign up to save your podcasts
Or


In this episode of the Data Show, I spoke with Jason Dai, CTO of big data technologies at Intel, and co-chair of Strata + Hadoop World Beijing. Dai and his team are prolific and longstanding contributors to the Apache Spark project. Their early contributions to Spark tended to be on the systems side and included Netty-based shuffle, a fair-scheduler, and the “yarn-client” mode. Recently, they have been contributing tools for advanced analytics. In partnership with major cloud providers in China, they’ve written implementations of algorithmic building blocks and machine learning models that let Apache Spark users scale to extremely high-dimensional models and large data sets. They achieve scalability by taking advantage of things like data sparsity and Intel’s MKL software. Along the way, they’ve gained valuable experience and insight into how companies deploy machine learning models in real-world applications.
By O'Reilly Media4
6363 ratings
In this episode of the Data Show, I spoke with Jason Dai, CTO of big data technologies at Intel, and co-chair of Strata + Hadoop World Beijing. Dai and his team are prolific and longstanding contributors to the Apache Spark project. Their early contributions to Spark tended to be on the systems side and included Netty-based shuffle, a fair-scheduler, and the “yarn-client” mode. Recently, they have been contributing tools for advanced analytics. In partnership with major cloud providers in China, they’ve written implementations of algorithmic building blocks and machine learning models that let Apache Spark users scale to extremely high-dimensional models and large data sets. They achieve scalability by taking advantage of things like data sparsity and Intel’s MKL software. Along the way, they’ve gained valuable experience and insight into how companies deploy machine learning models in real-world applications.

479 Listeners

623 Listeners

35 Listeners

8 Listeners

301 Listeners

334 Listeners

773 Listeners

269 Listeners

207 Listeners

205 Listeners

204 Listeners

306 Listeners

96 Listeners

261 Listeners

228 Listeners

616 Listeners

25 Listeners