
Sign up to save your podcasts
Or


What are the limitations of general large language models, and when should you evaluate more specialized models for your team’s most important use case?
This week, Conor Bronsdon sits down with Brandon Jung, Vice President of Ecosystem at Tabnine, to explore the difference between specialized models and LLMs. Brandon highlights how specialized models outperform LLMs when it comes to specific coding tasks, and how developers can leverage tailored solutions to improve developer productivity and code quality. The conversation covers the importance of data transparency, data origination, cost implications, and regulatory considerations such as the EU's AI Act.
Whether you're a developer looking to boost your productivity or an engineering leader evaluating solutions for your team, this episode offers important context on the next wave of AI solutions
Topics:
Links:
OFFERS
LEARN ABOUT LINEARB
By LinearB4.8
145145 ratings
What are the limitations of general large language models, and when should you evaluate more specialized models for your team’s most important use case?
This week, Conor Bronsdon sits down with Brandon Jung, Vice President of Ecosystem at Tabnine, to explore the difference between specialized models and LLMs. Brandon highlights how specialized models outperform LLMs when it comes to specific coding tasks, and how developers can leverage tailored solutions to improve developer productivity and code quality. The conversation covers the importance of data transparency, data origination, cost implications, and regulatory considerations such as the EU's AI Act.
Whether you're a developer looking to boost your productivity or an engineering leader evaluating solutions for your team, this episode offers important context on the next wave of AI solutions
Topics:
Links:
OFFERS
LEARN ABOUT LINEARB

271 Listeners

290 Listeners

623 Listeners

151 Listeners

289 Listeners

43 Listeners

226 Listeners

987 Listeners

210 Listeners

189 Listeners

207 Listeners

63 Listeners

1,381 Listeners

93 Listeners

63 Listeners