
Sign up to save your podcasts
Or
Hyperparameters define the strategy for exploring a space in which a machine learning model is being developed. Whereas the parameters of a machine learning model are the actual data coming into a system, the hyperparameters define how those data points are fed into the training process for building a model to be used by an end consumer.
A different set of hyperparameters will yield a different model. Thus, it is important to try different hyperparameter configurations to see which models end up performing better for a given application. Hyperparameter tuning is an art and a science.
Richard Liaw is an engineer and researcher, and the creator of Tune, a library for scalable hyperparameter tuning. Richard joins the show to talk through hyperparameters and the software that he has built for tuning them.
Sponsorship inquiries: [email protected]
The post Hyperparameter Tuning with Richard Liaw appeared first on Software Engineering Daily.
4.4
6969 ratings
Hyperparameters define the strategy for exploring a space in which a machine learning model is being developed. Whereas the parameters of a machine learning model are the actual data coming into a system, the hyperparameters define how those data points are fed into the training process for building a model to be used by an end consumer.
A different set of hyperparameters will yield a different model. Thus, it is important to try different hyperparameter configurations to see which models end up performing better for a given application. Hyperparameter tuning is an art and a science.
Richard Liaw is an engineer and researcher, and the creator of Tune, a library for scalable hyperparameter tuning. Richard joins the show to talk through hyperparameters and the software that he has built for tuning them.
Sponsorship inquiries: [email protected]
The post Hyperparameter Tuning with Richard Liaw appeared first on Software Engineering Daily.
285 Listeners
470 Listeners
586 Listeners
628 Listeners
435 Listeners
296 Listeners
213 Listeners
324 Listeners
988 Listeners
269 Listeners
190 Listeners
282 Listeners
138 Listeners
189 Listeners
421 Listeners