Die Amyloidosen gehören zu den Proteinspeicherkrankheiten. Die abgelagerten pathogenen Proteine zeichnen sich durch eine besondere Konformation, die β-Faltblattstruktur, aus. Man spricht daher auch von Konformationskrankheiten" oder "β-Fibrillosen". Bislang sind etwa 25 verschiedene Proteine bekannt, die im Menschen zu einer Amyloidose führen können. Je nach Lokalisation der Amyloidablagerungen unterscheidet man lokale („Amyloidom“), organlimitierte (z.B. zerebrale) und systemische Formen. Die Benennung erfolgt nach der Art des gespeicherten Proteins, wobei an das Kürzel „A“ für „Amyloid“ das Kürzel des gespeicherten Proteins angehängt wird: Die bekanntesten Amyloidosen sind vom Typ Aβ (M. Alzheimer), APrP (Scrapie), AA (Akutphasenprotein bei chronischen Entzündungen), Aβ2M (Urämie, chronische Hämodialyse), ATTR (Amyloid vom Transthyretin-Typ sporadisch im Alter sowie familiär bei Mutation) und AL (Leichtketten-Amyloid bei monoklonaler Gammopathie mit den Isotypen λ und κ). Daneben gibt es seltenere, dann oft familiär gehäuft auftretende und z.T. mit Polyneuropathie einhergehende Amyloidosen sowie Amyloid in endokrinen Drüsen.
In dieser Arbeit wurde die Amyloidose einer Patientin („UNK“) untersucht, die eine außergewöhnliche klinische Manifestation einer organlimitierten Amyloidose aufweist: Über 10 Jahre hinweg sind bei der Patientin multiple subkutane Knoten („Amyloidome“) aufgetreten, ohne dass sich im Verlauf ein Anhalt für eine systemische Amyloidverteilung ergab.
Bei den Amyloidablagerungen handelt es sich, wie in dieser Arbeit mit immunchemischen und biochemischen Methoden gezeigt werden konnte, um eine Amyloidose vom κ1-Leichtketten-Typ (ALκ1). Es werden also Teile eines Immunglobulins, nämlich einer κ-Kette der Subklasse 1 (man unterscheidet 4 κ-Subklassen, daneben gibt es noch Leichtketten vom Typ λ) in knotiger Form in der Subkutis gespeichert ausgehend von einer monoklonale Gammopathie. Das besondere auch daran ist, dass sich über 10 Jahre kein Progress im Sinne der Entwicklung eines Plasmozytoms gezeigt hat. Daneben wurde bei der Patientin ein zerebraler Entmarkungsherd (Multiple Sklerose) diagnostiziert, hierbei muss differentialdiagnostisch an das Vorliegen eines zerebralen Amyloidoms gedacht werden; es gibt dazu entsprechende Berichte in der Literatur.
Durch Isolation des Amyloidproteins aus dem Gewebe, Aufreinigung und anschließende Aminosäuresequenzierung (Edman-Abbau) kombiniert mit Massenspektrometrie konnte die vollständige Aminosäuresequenz der variablen Region (AS 1-108) sowie wesentlicher Teile (bis AS 207) der konstanten Region (AS 109-214) der abgelagerten κ-Kette ermittelt werden. Um die Frage zu klären, ob aus der Aminosäuresequenz des Proteins auf seine Amyloidogenität, also die Wahrscheinlichkeit, Amyloid zu bilden, geschlossen werden kann oder auf die sehr ungewöhnliche Art der klinischen Manifestation (Leichtkettenamyloidosen zeigen in der ganz überwiegenden Zahl der Fälle ein systemisches Befallsmuster), wurde die ermittelte Sequenz mit allen bislang veröffentlichten 17 Sequenzen von Amyloid-bildenden κ1-Ketten sowie nicht-amyloidogenen κ-Ketten verglichen mit folgendem Ergebnis:
(1) ALκ (UNK) zeigt 7 bisher nicht und etwa ebenso viele bisher nur selten beschriebene Aminosäureaustausche. Diese Aminosäureaustausche entsprechen kaum den bislang typischerweise mit erhöhter Amyloidogenität in Verbindung gebrachten Mutationen, so dass aus der Aminosäurenabfolge an sich kein Rückschluss auf die Amyloidogenität des Proteins möglich ist.
(2) Bemerkenswert ist ferner die (bei aus dem Gewebe isolierten Amyloidproteinen fast regelhaft auftretende) starke Fragmentierung des Proteins, ein "staggering" an Position 63-69 sowie eine Biklonalität (AS 82D und E), welche bisher für ALκ-Amyloidosen noch nicht beschrieben wurde.
(3) Die Hypothese, dass erhöhte Hydrophobizität die Amyloidogenität eines Proteins erhöht, wird durch ALκ (UNK) bestätigt, indem die in ALκ (UNK) neu aufgetretenen Aminos