
Sign up to save your podcasts
Or
In this episode of the Epigenetics Podcast, we caught up with Dr. Ken Zaret, Professor in the Department of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania, to talk about his work on pioneer transcription factors and their influence on chromatin structure.
Embryonic development is a complex process that needs to be tightly regulated. Multiple regulatory factors contribute to proper development, including a family of specialized regulatory proteins called "pioneer factors." Our guest Dr. Ken Zaret found that these pioneer factors are among the first proteins to bind to chromatin during development and that they can prime important regulatory genes for activation at a later developmental stage. Furthermore, he and his team showed that there might be a "pre-pattern" that exists in cells that determines their developmental fate.
Pioneer factors are not only important in embryonic development, they can also help restart transcription after mitosis. Dr. Zaret and his colleagues demonstrated that FoxA stays bound to chromosomes during mitosis, leading to a rapid reactivation of essential genes at the exit of mitosis.
In this interview, we discuss the story behind how Dr. Zaret discovered pioneer transcription factors like FoxA, how these factors are influenced by the chromatin environment, and how they function.
References
Contact
4.9
4343 ratings
In this episode of the Epigenetics Podcast, we caught up with Dr. Ken Zaret, Professor in the Department of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania, to talk about his work on pioneer transcription factors and their influence on chromatin structure.
Embryonic development is a complex process that needs to be tightly regulated. Multiple regulatory factors contribute to proper development, including a family of specialized regulatory proteins called "pioneer factors." Our guest Dr. Ken Zaret found that these pioneer factors are among the first proteins to bind to chromatin during development and that they can prime important regulatory genes for activation at a later developmental stage. Furthermore, he and his team showed that there might be a "pre-pattern" that exists in cells that determines their developmental fate.
Pioneer factors are not only important in embryonic development, they can also help restart transcription after mitosis. Dr. Zaret and his colleagues demonstrated that FoxA stays bound to chromosomes during mitosis, leading to a rapid reactivation of essential genes at the exit of mitosis.
In this interview, we discuss the story behind how Dr. Zaret discovered pioneer transcription factors like FoxA, how these factors are influenced by the chromatin environment, and how they function.
References
Contact
6,177 Listeners
5,420 Listeners
759 Listeners
811 Listeners
406 Listeners
2,141 Listeners
2,051 Listeners
32,093 Listeners
21,912 Listeners
26,336 Listeners
43,356 Listeners
8,016 Listeners
6,206 Listeners
5,448 Listeners
1,481 Listeners