请大家在微信公众号(深度认知神经 brains_coffee)上阅读精心排板的文字采访。
位学鑫,2009年本科毕业于北京大学数学科学学院,博士毕业于宾夕法尼亚大学心理系,获杰出博士论文奖 Louis Flexner Award,哥伦比亚大学理论神经科学中心博士后。2020年起开始在美国德州大学奥斯汀分校(UT Austin)神经科学系担任助理教授,组建理论与计算神经科学实验室。
位教授之前的代表性工作主要在研究神经元如何有效的编码(efficient coding)以及对视觉的影响,知觉的贝叶斯模型,以及大脑的空间导航机制,特别是网格细胞(grid cell)的功能。近期的一项研究首次揭示了训练人工神经网络进行导航任务可以产生类似网格细胞的响应。论文曾发表于Neural Computation, Nature Neuroscience, NBDT journal, PNAS, eLife, NeurIPS, ICLR 等期刊和会议。
实验室现在的研究方向聚焦于神经科学,认知科学,统计学和人工智能的交叉。具体问题包括神经元编码和解码,基于深度神经网络的认知过程建模,视觉信息加工和自适应过程,行为数据的理论建模,高维神经数据的统计建模。此外实验室和多个系统神经科学实验室有紧密合作和共同研究课题。
实验室目前有空缺职位,欢迎大家申请博士、博后和研究助理。
位教授联系邮箱:[email protected]
学习资源:
[1] YouTube Channel:
MITCBMM, The Center for Brains, Minds and Machines (CBMM) is a National Science Foundation funded Science and Technology Center focused on the interdisciplinary study of intelligence. This effort is a multi-institutional collaboration headquartered at the McGovern Institute for Brain Research at MIT, with managing partners at Harvard University.
[2] Summer School:
Neuromatch Academy 2020 started by the team who created CoSMo summer school, CCN SS, Simons IBRO, and neuromatch conference, we announce a worldwide academy to train neuroscientists to learn computational tools, make connections to real world neuroscience problems, and promote networking with researchers. More details in the official website(https://neuromatch.io/academy/volunteer).
[3] Textbook:
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems.
[4] ICLR 2018 - Article:https://openreview.net/forum?id=B17JTOe0-
Google Deep Mind - Blog:https://deepmind.com/blog/article/grid-cells
本期主播:张洳源,不纠结的科研工作者,美国国立健康研究院博后。
文字制作:阿靗,脑科学研究生ing,方向脑网络和形态学分析。
美工制作:静玲,有心理学背景的新传小白,希望永远好奇,不负心中热爱。
本期排版:白小白,研究孤独症模仿与动作理解的海外时差党。
您的支持就是我们最大的动力