Share Science with a Twist
Share to email
Share to Facebook
Share to X
By Thermo Fisher
4.6
2929 ratings
The podcast currently has 43 episodes available.
Listen to the conversation as they discuss:
Dr. Blackburne shares insights into:
The Critical Role of Plastics in Modern Society
Despite the challenges associated with plastic in the environment, Kat Knauer, Ph.D., emphasizes the indispensable role of plastics in healthcare, research, and daily life. She points out that while plastics have significantly improved quality of life and medical care, their improper disposal poses a significant threat to the environment. She advocates for a balanced approach to improving plastics use, suggesting that the answer lies not in eliminating plastics altogether but in innovating more sustainable management and recycling practices. This nuanced perspective encourages listeners to appreciate the benefits of plastics while acknowledging the urgency of addressing their environmental impact.
Innovations in Plastic Recycling and Sustainability
Kat introduces groundbreaking work on the development of sustainable technologies for recycling plastics and designing new materials that are recyclable by design. She highlights the BOTTLE Consortium's efforts in chemically upcycling existing plastic waste streams and creating plastics that are more compatible with the environment. This initiative reflects a significant shift towards reducing reliance on single-use plastics and fossil fuels, aiming for a circular economy where the life cycle of a plastic is extended through recycling and reuse. Kat's discussion on these innovations offers hope for a future where plastic pollution is significantly mitigated through scientific research and technological advancement.
Collaboration as a Key to Tackling Plastic Pollution
The conversation underscores the importance of collaboration across different sectors to address the plastic waste crisis. Kat mentions partnerships with companies like Amazon and Patagonia, which are working towards creating more sustainable packaging solutions and textile recycling methods. These collaborations illustrate how combining efforts from the scientific community, industry leaders, and consumers can lead to innovative solutions that promote a more sustainable future. Calling for increased collaboration and communication to bridge gaps in the recycling process, Kat also offers tips for more responsible consumption and disposal practices among consumers.
Gene Therapy's Potential to Transform Rare Disease Treatment
Dr. Peter Marks highlights the groundbreaking advancements in gene therapy, especially for rare diseases with high unmet medical needs. He discusses the FDA's role in fostering these innovations, underscoring the importance of understanding gene therapy's application and ensuring its safe delivery. Dr. Marks emphasizes the challenges in manufacturing gene therapies, noting that overcoming these hurdles is essential for treating large populations and common diseases. This insight reflects on the hope and complexity of gene therapy, aiming to provide one-time treatments that could drastically improve patient outcomes.
The Role of AI in Enhancing Gene Therapy Development
Dr. Marks points out the significant potential use cases for artificial intelligence (AI) in gene therapy, from product design to clinical development and manufacturing. AI’s ability to predict off-target effects and streamline the manufacturing process could be a game-changer in this space. By harnessing AI, researchers and developers can optimize safety signals and process large quantities of data for continuous improvement. This insight underscores the potential of AI to revolutionize gene therapy, making it more efficient and effective.
Emphasizing the Human Impact of Gene Therapies
Dr. Marks and Miller share personal stories of patients and families affected by rare diseases, illustrating the transformative power of gene therapy. They recount profound effects of recent gene therapy approvals on individuals and their communities, particularly highlighting Duchenne Muscular Dystrophy. Marks's narrative conveys the deep emotional and physical impact of gene therapy, not just as a scientific achievement but as a means to significantly enhance lives. This insight brings to light the importance of patient-centered approaches in the development and application of gene therapies.
Revolutionizing Biomedical Research with Mass Spectrometry
Joshua J. Coon discusses the transformative role of mass spectrometry in biomedical research. This technology, as he explains, allows for the precise weighing of molecules, providing critical insights into their identity and quantity. Coon's lab utilizes mass spectrometry to analyze complex biological systems, such as cells and tissues, identifying over 10,000 molecules in a single sample. This capability has significant implications for understanding genetic and lifestyle influences on molecular behavior in organisms. Coon's work exemplifies how a fundamental scientific tool can lead to profound discoveries in disease mechanisms and potential treatments.
Linking Unknown Proteins to Disease: A New Frontier
Coon highlights a groundbreaking project where his team investigates proteins of unknown function, particularly those involved in metabolism and located in mitochondria. By creating cell lines with each lacking a different protein and then using mass spectrometry to analyze the resulting molecular changes, they can infer relationships between known and unknown proteins. This approach has led to identifying the functions of several proteins and linking them to specific human disorders. This research is not only pioneering in its method but also crucial in laying the groundwork for new therapies, as understanding protein functions can lead to targeted drug development.
Personal Journey: From Rural Roots to Research Leader
Joshua J. Coon shares his personal journey, beginning in rural Michigan, where his early interests in science and woodworking led him to the field of mass spectrometry. His path took him through the University of Florida for his PhD and the University of Virginia for postdoctoral studies, culminating in leading his research group at the University of Wisconsin-Madison. Joshua emphasizes the joy of training the next generation of scientists, with his lab producing over 50 PhD students and postdocs who are now contributing significantly to science globally. This insight not only sheds light on Coon's professional achievements but also highlights his role in mentoring and shaping future scientific leaders.
Brazil's Proactive Measures Against HIV
Brazil has been at the forefront of combating HIV, implementing proactive measures that have made a significant difference. The country began providing no-cost access to CD4 and viral load testing and antiretroviral drugs as early as 1996. This early intervention and consistent approach led to a remarkable outcome: the number of HIV cases in Brazil was significantly lower than initially predicted. An article from the New England Journal of Medicine stated that initial estimates predicted Brazil would have 1.2 million people infected with HIV by the year 2000, but with the strategies the country put in place, their actual numbers were about half of what was predicted. By offering free access to treatments and diagnostic tests, Brazil showcased the importance of early and sustained intervention in managing and reducing the spread of HIV.
The Rising Challenge of HIV Drug Resistance
One of the most pressing challenges in the fight against HIV is the development of drug resistance. Dr. Ricardo Diaz emphasizes that as the HIV virus replicates, it can produce strains resistant to treatment. This resistance threatens the efficacy of antiretroviral drugs, making it crucial to monitor and manage. The World Health Organization reports an increasing rate of HIV drug resistance, underscoring the need for continuous research, monitoring, and adaptation of treatment strategies.
Pre-exposure Prophylaxis (PrEP) Drugs Exist, but are not 100% Effective
PrEP, or pre-exposure prophylaxis, is also an antiretroviral drug given to uninfected individuals who are at risk of infection to reduce their chances of acquiring HIV. PrEP is highly effective at preventing HIV when taken as indicated, but much less effective when it isn't taken consistently. Additionally, it's possible to be exposed to HIV strains that are drug resistant while on PrEP, so monitoring resistance in people on PrEP is another important step in prevention.
The Gap in HIV Drug Resistance Testing
Despite the advancements in treatment, there's a noticeable disparity in HIV drug resistance testing, especially in Brazil. Dr. Diaz highlights that while a centralized lab in Brazil performs genotype testing, the number of tests conducted falls short of the actual need. With 10% of patients on treatment showing a viral load above the desired limit, the demand for resistance testing is evident. Bridging this gap and increasing surveillance efforts is essential to tailor treatments effectively and combat the spread of drug-resistant HIV strains.
⚡Semiconductor chips go through a long manufacturing process. It all depends on the type of chip, but the standard timeframe is between 120 days and nine months. It is a three-phase process that includes design and frontend and backend manufacturing, all dependent on various factors. ''These are global supply chains supporting the completed product. Semiconductor chips could be manufactured by a large fab, maybe most of it within the house, but there are diversified approaches too, where the chip is moving across the country to complete certain stages of manufacturing.''
⚡Some companies don't produce semiconductors in-house. The rationale behind such a decision lies in the need for a specific environment and certain conditions for making these chips. ''The fabs themselves are like huge low cities. All of this has to be clean room work. It needs to be done within one location generally. So because it's clean room work, you can't send that across until a critical step is completed in the manufacturing process. [...] If even a dust molecule were to land on any of these chips, the dust molecule's width is wide enough to block the passes of electrical current on the chip, thus making the chip ineffective," explains Geoff.
⚡We use a wide range of gases to prevent impurities from harming the chips. The most commonly used are helium, nitrogen, argon, and hydrogen. However, the gases used must be in perfect condition. And that's Mark's job. ''My experience is mostly with mass spectrometry, which is one of the best ways to analyze compounds like this. Specifically, an API-MS — an atmospheric pressure ionization mass spectrometer — has a simplified analysis of big bulk gases. For example, in the past 20 or 30 years, you could not analyze oxygen, if you could not get down low detection limits, analyze oxygen in bulk nitrogen. That used to be a lot more difficult with traditional techniques. But Thermo Fisher Scientific has put out some new analyzers with such a low detection limit there that we can accurately say we will get 10 to 15 parts per trillion in our gases that are being put through all these processes.''
The Power of Passion in STEM
Eleanor emphasizes the importance of pursuing what you love in STEM. She advises students to focus on their interests rather than trying to impress judges or make a big impact. Eleanor encourages students to be scrappy and innovative and to believe in their ability to navigate through challenges. She underscores that STEM is not just for prodigies and professionals and that anyone can make a difference.
Community Can Help Advance STEM
Eleanor and Maya discuss the importance of community and mentorship in STEM. They highlight the need to break through the competitiveness of STEM and foster inclusivity. They also discuss the role of organizations like Thermo Fisher Scientific in promoting access and equity in STEM learning experiences.
Gratitude and Mentorship are Key
Eleanor and Maya highlight the importance of expressing gratitude to mentors and the value of paying it forward. They emphasize that mentors play a crucial role in guiding students in their STEM journey. Eleanor also encourages students to remember to thank their mentors, emphasizing that a little bit of gratitude can go a long way.
The Power of Pharmacogenomics
Jeff explains how pharmacogenomics, the study of how genes affect a person's response to medications, can revolutionize healthcare. By understanding a patient's genetic makeup, healthcare providers can prescribe the right medication and dosage, reducing trial and error, improving treatment effectiveness, and minimizing side effects. This approach acknowledges that each person is unique and recognizes the complex interplay of genetics and non-genetic factors to determine health outcomes.
Real-World Impact of Pharmacogenomics
Jeff provides real-world examples of how pharmacogenomics can impact medication management. He discusses the role of the medication Clopidogrel, used with patients who are recieving a stent. He explains how genetic variations can affect the response to this medication, highlighting the importance of pharmacogenomics in ensuring effective treatment.
The Future of Healthcare
Jeff discusses the future of healthcare, including the potential of wearable and implantable devices. He emphasizes the importance of giving healthcare professionals more tools to react in real-time and make informed decisions about patient care. He also discusses how companies like Coriell Life Sciences offer comprehensive medication management programs, highlighting the importance of scalability and accessibility in the adoption of pharmacogenomics.
⚡PFAS stands for Per- and Polyfluoroalkyl Substances. Simply put, PFAS are man-made compounds synthesized in a laboratory. ''They were first made in the 1940s. Teflon was one of the very first developments of PFAS. PFAS is a universe of chemicals useful for lots of different consumer and industrial applications over the last 60 to 70 years. These include things like firefighting foam, stain repellents on carpets and textiles, and also mist suppressants to protect workers in chromium plating activities.''
⚡We all have the right to clean water, hence the necessity for testing it for PFAS. Although we can get exposed to PFAS in all sorts of ways, we are primarily interested in determining whether our drinking water supplies have been exposed to these chemicals. ''Water is one of the things that we all require. We can be exposed to PFAS through food and contact with materials that contain PFAS. But we all have to drink water, and because of the mobility and the persistence of PFAS, it's important for us to understand this base level exposure that we could potentially have from our water supplies.''
⚡Over 96% of Americans have PFAS in their blood. The statistics may seem concerning, however, Dr. Ferguson shares advice on how we can minimize exposure to these chemicals. ''My kids and wife always tell me I cook like an 80-year-old grandmother. I use cast iron pots, stainless steel, and no Teflon in the kitchen. Also, choose a water filter that can help to remove PFAS. And then, in terms of the products you buy, things like clothing. Try to avoid things that have fluoridated stain repellents on them. That does a couple of things. First of all, it protects you because you've chosen a material that doesn't contain PFAS, but it also puts pressure on the manufacturer.''
The podcast currently has 43 episodes available.
90,469 Listeners
43,158 Listeners