
Sign up to save your podcasts
Or
Sean Moriarity, creator of the Axon deep learning framework, co-creator of the Nx library, and author of Machine Learning in Elixir and Genetic Algorithms in Elixir, published by the Pragmatic Bookshelf, speaks with SE Radio host Gavin Henry about what deep learning (neural networks) means today. Using a practical example with deep learning for fraud detection, they explore what Axon is and why it was created. Moriarity describes why the Beam is ideal for machine learning, and why he dislikes the term “neural network.” They discuss the need for deep learning, its history, how it offers a good fit for many of today’s complex problems, where it shines and when not to use it. Moriarity goes into depth on a range of topics, including how to get datasets in shape, supervised and unsupervised learning, feed-forward neural networks, Nx.serving, decision trees, gradient descent, linear regression, logistic regression, support vector machines, and random forests. The episode considers what a model looks like, what training is, labeling, classification, regression tasks, hardware resources needed, EXGBoost, Jax, PyIgnite, and Explorer. Finally, they look at what’s involved in the ongoing lifecycle or operational side of Axon once a workflow is put into production, so you can safely back it all up and feed in new data. Brought to you by IEEE Computer Society and IEEE Software magazine. This episode sponsored by Miro.
4.4
269269 ratings
Sean Moriarity, creator of the Axon deep learning framework, co-creator of the Nx library, and author of Machine Learning in Elixir and Genetic Algorithms in Elixir, published by the Pragmatic Bookshelf, speaks with SE Radio host Gavin Henry about what deep learning (neural networks) means today. Using a practical example with deep learning for fraud detection, they explore what Axon is and why it was created. Moriarity describes why the Beam is ideal for machine learning, and why he dislikes the term “neural network.” They discuss the need for deep learning, its history, how it offers a good fit for many of today’s complex problems, where it shines and when not to use it. Moriarity goes into depth on a range of topics, including how to get datasets in shape, supervised and unsupervised learning, feed-forward neural networks, Nx.serving, decision trees, gradient descent, linear regression, logistic regression, support vector machines, and random forests. The episode considers what a model looks like, what training is, labeling, classification, regression tasks, hardware resources needed, EXGBoost, Jax, PyIgnite, and Explorer. Finally, they look at what’s involved in the ongoing lifecycle or operational side of Axon once a workflow is put into production, so you can safely back it all up and feed in new data. Brought to you by IEEE Computer Society and IEEE Software magazine. This episode sponsored by Miro.
244 Listeners
284 Listeners
152 Listeners
40 Listeners
590 Listeners
621 Listeners
269 Listeners
141 Listeners
987 Listeners
189 Listeners
181 Listeners
62 Listeners
139 Listeners
47 Listeners
63 Listeners