
Sign up to save your podcasts
Or
In this episode of Software Engineering Radio, Abhinav Kimothi sits down with host Priyanka Raghavan to explore retrieval-augmented generation (RAG), drawing insights from Abhinav's book, A Simple Guide to Retrieval-Augmented Generation.
The conversation begins with an introduction to key concepts, including large language models (LLMs), context windows, RAG, hallucinations, and real-world use cases. They then delve into the essential components and design considerations for building a RAG-enabled system, covering topics such as retrievers, prompt augmentation, indexing pipelines, retrieval strategies, and the generation process.
The discussion also touches on critical aspects like data chunking and the distinctions between open-source and pre-trained models. The episode concludes with a forward-looking perspective on the future of RAG and its evolving role in the industry.
Brought to you by IEEE Computer Society and IEEE Software magazine.
4.4
267267 ratings
In this episode of Software Engineering Radio, Abhinav Kimothi sits down with host Priyanka Raghavan to explore retrieval-augmented generation (RAG), drawing insights from Abhinav's book, A Simple Guide to Retrieval-Augmented Generation.
The conversation begins with an introduction to key concepts, including large language models (LLMs), context windows, RAG, hallucinations, and real-world use cases. They then delve into the essential components and design considerations for building a RAG-enabled system, covering topics such as retrievers, prompt augmentation, indexing pipelines, retrieval strategies, and the generation process.
The discussion also touches on critical aspects like data chunking and the distinctions between open-source and pre-trained models. The episode concludes with a forward-looking perspective on the future of RAG and its evolving role in the industry.
Brought to you by IEEE Computer Society and IEEE Software magazine.
377 Listeners
244 Listeners
284 Listeners
152 Listeners
40 Listeners
590 Listeners
621 Listeners
269 Listeners
215 Listeners
987 Listeners
189 Listeners
181 Listeners
62 Listeners
47 Listeners
53 Listeners