
Sign up to save your podcasts
Or


Talk by Dr. Lynn Cominsky (Sonoma State University)
Gravitational waves are predicted by Einstein's General Theory of Relativity. They travel at the speed of light, but are much harder to detect than light waves. On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first direct gravitational wave signals. The event that produced them was the merger of two distant and massive black holes that were in mutual orbit. Prof. Cominsky presents an introduction to LIGO, to gravitational waves and how they were detected, and to the kinds of black holes that "make waves" in the fabric of space and time. Originally recorded on Nov. 2, 2016.
By Silicon Valley Astronomy Lectures4.7
1212 ratings
Talk by Dr. Lynn Cominsky (Sonoma State University)
Gravitational waves are predicted by Einstein's General Theory of Relativity. They travel at the speed of light, but are much harder to detect than light waves. On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first direct gravitational wave signals. The event that produced them was the merger of two distant and massive black holes that were in mutual orbit. Prof. Cominsky presents an introduction to LIGO, to gravitational waves and how they were detected, and to the kinds of black holes that "make waves" in the fabric of space and time. Originally recorded on Nov. 2, 2016.

351 Listeners

1,356 Listeners

313 Listeners

829 Listeners

2,873 Listeners

563 Listeners

228 Listeners

1,063 Listeners

2,340 Listeners

317 Listeners

392 Listeners

101 Listeners

137 Listeners

53 Listeners

510 Listeners