
Sign up to save your podcasts
Or
Talk by Dr. Lynn Cominsky (Sonoma State University)
Gravitational waves are predicted by Einstein's General Theory of Relativity. They travel at the speed of light, but are much harder to detect than light waves. On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first direct gravitational wave signals. The event that produced them was the merger of two distant and massive black holes that were in mutual orbit. Prof. Cominsky presents an introduction to LIGO, to gravitational waves and how they were detected, and to the kinds of black holes that "make waves" in the fabric of space and time. Originally recorded on Nov. 2, 2016.
4.6
1111 ratings
Talk by Dr. Lynn Cominsky (Sonoma State University)
Gravitational waves are predicted by Einstein's General Theory of Relativity. They travel at the speed of light, but are much harder to detect than light waves. On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first direct gravitational wave signals. The event that produced them was the merger of two distant and massive black holes that were in mutual orbit. Prof. Cominsky presents an introduction to LIGO, to gravitational waves and how they were detected, and to the kinds of black holes that "make waves" in the fabric of space and time. Originally recorded on Nov. 2, 2016.
1,345 Listeners
2,866 Listeners
336 Listeners
544 Listeners
804 Listeners
501 Listeners
223 Listeners
320 Listeners
1,049 Listeners
2,307 Listeners
287 Listeners
363 Listeners
55 Listeners
134 Listeners
52 Listeners