
Sign up to save your podcasts
Or
We have a pretty good idea of both what's in our Universe and how it grew up. But it's only because we have several different, completely independent lines of evidence that point to the same consensus picture that we actually believe that our Universe is 13.8 billion years old and composed of a mix of normal matter and radiation, but is dominated by dark matter and dark energy on the largest of cosmic scales.
In particular, we form large, cosmically bound structures on the scales of galaxies and galaxy clusters, but on larger scales, dark energy and the expanding Universe dominate, working to drive everything apart. The story of how we've come to know this information about the Universe and how we're using both old and new techniques to push the our understanding further is the subject of this edition of our podcast. It features PhD candidate Karolina Garcia, who's kind enough to walk us through a variety of types of research that all serve the same end: to reveal the story of the Universe and how it grew up to be the way it is today. Take a listen; you won't regret it!
(This image shows a series of structure-formation simulations: at low resolution, medium resolution, and superior/high resolution, for both cold dark matter and fuzzy dark matter models. If we can measure the Universe precisely and accurately enough, we can distinguish between these types of models, contingent on whether we simulate it to great enough precision. Credit: M. Sipp et al., MNRAS (submitted), 2023)
4.7
6565 ratings
We have a pretty good idea of both what's in our Universe and how it grew up. But it's only because we have several different, completely independent lines of evidence that point to the same consensus picture that we actually believe that our Universe is 13.8 billion years old and composed of a mix of normal matter and radiation, but is dominated by dark matter and dark energy on the largest of cosmic scales.
In particular, we form large, cosmically bound structures on the scales of galaxies and galaxy clusters, but on larger scales, dark energy and the expanding Universe dominate, working to drive everything apart. The story of how we've come to know this information about the Universe and how we're using both old and new techniques to push the our understanding further is the subject of this edition of our podcast. It features PhD candidate Karolina Garcia, who's kind enough to walk us through a variety of types of research that all serve the same end: to reveal the story of the Universe and how it grew up to be the way it is today. Take a listen; you won't regret it!
(This image shows a series of structure-formation simulations: at low resolution, medium resolution, and superior/high resolution, for both cold dark matter and fuzzy dark matter models. If we can measure the Universe precisely and accurately enough, we can distinguish between these types of models, contingent on whether we simulate it to great enough precision. Credit: M. Sipp et al., MNRAS (submitted), 2023)
928 Listeners
1,331 Listeners
14,167 Listeners
543 Listeners
804 Listeners
506 Listeners
225 Listeners
296 Listeners
1,050 Listeners
4,125 Listeners
2,308 Listeners
507 Listeners
280 Listeners
363 Listeners
495 Listeners