
Sign up to save your podcasts
Or
In this episode of PING, APNIC’s Chief Scientist Geoff Huston discusses the coming future of VLSI with Moores law coming to an end. This was motivated by a key presentation made at the most recent ANRW session at IETF117, San Francisco.
For over 5 decades we have been able to rely on an annual, latterly bi-annual doubling of speed called Moore's Law, and halving of size of the technology inside a microchip: Very Large Scale Integration (VLSI), the basic building block of the modern age being the transistor.
From it's beginnings off the back of the diode, replacing valves but still discrete components, to the modern reality of trillions of logic "gates" on a single chip, everything we have built in recent times which includes a computer, has been built under the model "it can only get cheaper next time round" -But for various reasons explored in this episode, that isn't true any more, and won't be true into the future.
We're going to have to get used to the idea it isn't always faster, smaller, cheaper, and this will have an impact on how we design Networks, including details inside the protocol stack which go to processing complexity forwarding those packets along the path.
A few times, Both Geoff and myself get our prefixes mixed up and may say millimeters for nanometers or even worse on air. We also confused the order of letters in the company Acronym TSMC -The Taiwan Semiconductor Manufacturing Company.
Read more about the end of Moore's law on APNIC Blog and the IETF:
5
44 ratings
In this episode of PING, APNIC’s Chief Scientist Geoff Huston discusses the coming future of VLSI with Moores law coming to an end. This was motivated by a key presentation made at the most recent ANRW session at IETF117, San Francisco.
For over 5 decades we have been able to rely on an annual, latterly bi-annual doubling of speed called Moore's Law, and halving of size of the technology inside a microchip: Very Large Scale Integration (VLSI), the basic building block of the modern age being the transistor.
From it's beginnings off the back of the diode, replacing valves but still discrete components, to the modern reality of trillions of logic "gates" on a single chip, everything we have built in recent times which includes a computer, has been built under the model "it can only get cheaper next time round" -But for various reasons explored in this episode, that isn't true any more, and won't be true into the future.
We're going to have to get used to the idea it isn't always faster, smaller, cheaper, and this will have an impact on how we design Networks, including details inside the protocol stack which go to processing complexity forwarding those packets along the path.
A few times, Both Geoff and myself get our prefixes mixed up and may say millimeters for nanometers or even worse on air. We also confused the order of letters in the company Acronym TSMC -The Taiwan Semiconductor Manufacturing Company.
Read more about the end of Moore's law on APNIC Blog and the IETF:
1,963 Listeners
43,833 Listeners
361 Listeners
230 Listeners
3,115 Listeners
101 Listeners
7,822 Listeners
33 Listeners
15 Listeners
12 Listeners
81 Listeners
31 Listeners
10,200 Listeners
33 Listeners
47 Listeners