
Sign up to save your podcasts
Or


In this episode of the Epigenetics Podcast, we caught up with Folami Ideraabdullah from the University of Chapel Hill to talk about her work on the environmental modulation of the epigenome during development.
The lab of Folami Ideraabdullah focuses on studying how environmental factors modulate the epigenome. In particular the team investigates how Vitamin D levels influence epigenetic processes and, hence, the susceptibility for diseases like adipositas. Folami Ideraabdullah started with a genome-wide screen of DNA Methylation patterns that are observed after Vitamin D depletion. This work was then followed up by investigating the impact of Vitamin D depletion on mouse sperm DNA methylation.
References
Xue, J., Schoenrock, S. A., Valdar, W., Tarantino, L. M., & Ideraabdullah, F. Y. (2016). Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clinical Epigenetics, 8(1), 107. https://doi.org/10.1186/s13148-016-0276-4
Xue, J., Gharaibeh, R. Z., Pietryk, E. W., Brouwer, C., Tarantino, L. M., Valdar, W., & Ideraabdullah, F. Y. (2018). Impact of vitamin D depletion during development on mouse sperm DNA methylation. Epigenetics, 13(9), 959–974. https://doi.org/10.1080/15592294.2018.1526027
Xue, J., Hutchins, E. K., Elnagheeb, M., Li, Y., Valdar, W., McRitchie, S., Sumner, S., & Ideraabdullah, F. Y. (2020). Maternal Liver Metabolic Response to Chronic Vitamin D Deficiency Is Determined by Mouse Strain Genetic Background. Current Developments in Nutrition, 4(8), nzaa106. https://doi.org/10.1093/cdn/nzaa106
Related Episodes
Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus)
Epigenetic Influence on Memory Formation and Inheritance (Isabelle Mansuy)
Epigenetic Origins Of Heterogeneity And Disease (Andrew Pospisilik)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: [email protected]
By Active Motif4.9
4343 ratings
In this episode of the Epigenetics Podcast, we caught up with Folami Ideraabdullah from the University of Chapel Hill to talk about her work on the environmental modulation of the epigenome during development.
The lab of Folami Ideraabdullah focuses on studying how environmental factors modulate the epigenome. In particular the team investigates how Vitamin D levels influence epigenetic processes and, hence, the susceptibility for diseases like adipositas. Folami Ideraabdullah started with a genome-wide screen of DNA Methylation patterns that are observed after Vitamin D depletion. This work was then followed up by investigating the impact of Vitamin D depletion on mouse sperm DNA methylation.
References
Xue, J., Schoenrock, S. A., Valdar, W., Tarantino, L. M., & Ideraabdullah, F. Y. (2016). Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clinical Epigenetics, 8(1), 107. https://doi.org/10.1186/s13148-016-0276-4
Xue, J., Gharaibeh, R. Z., Pietryk, E. W., Brouwer, C., Tarantino, L. M., Valdar, W., & Ideraabdullah, F. Y. (2018). Impact of vitamin D depletion during development on mouse sperm DNA methylation. Epigenetics, 13(9), 959–974. https://doi.org/10.1080/15592294.2018.1526027
Xue, J., Hutchins, E. K., Elnagheeb, M., Li, Y., Valdar, W., McRitchie, S., Sumner, S., & Ideraabdullah, F. Y. (2020). Maternal Liver Metabolic Response to Chronic Vitamin D Deficiency Is Determined by Mouse Strain Genetic Background. Current Developments in Nutrition, 4(8), nzaa106. https://doi.org/10.1093/cdn/nzaa106
Related Episodes
Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus)
Epigenetic Influence on Memory Formation and Inheritance (Isabelle Mansuy)
Epigenetic Origins Of Heterogeneity And Disease (Andrew Pospisilik)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: [email protected]

22,024 Listeners

43,971 Listeners

32,156 Listeners

30,650 Listeners

43,767 Listeners

1,379 Listeners

761 Listeners

12,177 Listeners

59,176 Listeners

824 Listeners

1,450 Listeners

24,314 Listeners

124 Listeners

6,089 Listeners

2,108 Listeners