
Sign up to save your podcasts
Or


In this episode of the Epigenetics Podcast, we caught up with Catherine Jensen Peña from Princeton University to talk about her work on early life stress and its effects on behavior.
The Laboratory of Catherine Peña focuses on how early life experiences are encoded and maintained into adulthood, with a long-lasting impact on behavior. Recent work showed, that child maltreatment and other forms of early life stress increase the lifetime risk of depression and other mood, anxiety, and drug disorders by 2-4 fold. The Peña Lab uses genome wide approaches to investigate key brain regions with a two-hit stress model.
Using RNA-Seq, the Peña Lab has shown that depression-like gene expression patterns are programmed by early life stress, similar to observations in mice exhibiting depression-like behavior after adult stress and are visible even before behavioral changes. Furthermore, latent and unique transcriptional responses to adult stress among a subset of genes is programmed by early life stress. The role of chromatin modifications in regulating these processes are investigated using state of the art technologies like Mod-Spec or ATAC-Seq.
References
Kronman, H., Torres-Berrío, A., Sidoli, S., Issler, O., Godino, A., Ramakrishnan, A., Mews, P., Lardner, C. K., Parise, E. M., Walker, D. M., van der Zee, Y. Y., Browne, C. J., Boyce, B. F., Neve, R., Garcia, B. A., Shen, L., Peña, C. J., & Nestler, E. J. (2021). Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nature Neuroscience, 24(5), 667–676. https://doi.org/10.1038/s41593-021-00814-8
Peña, C. J., Smith, M., Ramakrishnan, A., Cates, H. M., Bagot, R. C., Kronman, H. G., Patel, B., Chang, A. B., Purushothaman, I., Dudley, J., Morishita, H., Shen, L., & Nestler, E. J. (2019). Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 10(1), 5098. https://doi.org/10.1038/s41467-019-13085-6
Peña, C. J., Kronman, H. G., Walker, D. M., Cates, H. M., Bagot, R. C., Purushothaman, I., Issler, O., Loh, Y.-H. E., Leong, T., Kiraly, D. D., Goodman, E., Neve, R. L., Shen, L., & Nestler, E. J. (2017). Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science, 356(6343), 1185–1188. https://doi.org/10.1126/science.aan4491
Related Episodes
Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus)
The Role of Small RNAs in Transgenerational Inheritance in C. elegans (Oded Rechavi)
Epigenetic Influence on Memory Formation and Inheritance (Isabelle Mansuy)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: [email protected]
By Active Motif4.9
4343 ratings
In this episode of the Epigenetics Podcast, we caught up with Catherine Jensen Peña from Princeton University to talk about her work on early life stress and its effects on behavior.
The Laboratory of Catherine Peña focuses on how early life experiences are encoded and maintained into adulthood, with a long-lasting impact on behavior. Recent work showed, that child maltreatment and other forms of early life stress increase the lifetime risk of depression and other mood, anxiety, and drug disorders by 2-4 fold. The Peña Lab uses genome wide approaches to investigate key brain regions with a two-hit stress model.
Using RNA-Seq, the Peña Lab has shown that depression-like gene expression patterns are programmed by early life stress, similar to observations in mice exhibiting depression-like behavior after adult stress and are visible even before behavioral changes. Furthermore, latent and unique transcriptional responses to adult stress among a subset of genes is programmed by early life stress. The role of chromatin modifications in regulating these processes are investigated using state of the art technologies like Mod-Spec or ATAC-Seq.
References
Kronman, H., Torres-Berrío, A., Sidoli, S., Issler, O., Godino, A., Ramakrishnan, A., Mews, P., Lardner, C. K., Parise, E. M., Walker, D. M., van der Zee, Y. Y., Browne, C. J., Boyce, B. F., Neve, R., Garcia, B. A., Shen, L., Peña, C. J., & Nestler, E. J. (2021). Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nature Neuroscience, 24(5), 667–676. https://doi.org/10.1038/s41593-021-00814-8
Peña, C. J., Smith, M., Ramakrishnan, A., Cates, H. M., Bagot, R. C., Kronman, H. G., Patel, B., Chang, A. B., Purushothaman, I., Dudley, J., Morishita, H., Shen, L., & Nestler, E. J. (2019). Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 10(1), 5098. https://doi.org/10.1038/s41467-019-13085-6
Peña, C. J., Kronman, H. G., Walker, D. M., Cates, H. M., Bagot, R. C., Purushothaman, I., Issler, O., Loh, Y.-H. E., Leong, T., Kiraly, D. D., Goodman, E., Neve, R. L., Shen, L., & Nestler, E. J. (2017). Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science, 356(6343), 1185–1188. https://doi.org/10.1126/science.aan4491
Related Episodes
Nutriepigenetics: The Effects of Diet on Behavior (Monica Dus)
The Role of Small RNAs in Transgenerational Inheritance in C. elegans (Oded Rechavi)
Epigenetic Influence on Memory Formation and Inheritance (Isabelle Mansuy)
Contact
Active Motif on Twitter
Epigenetics Podcast on Twitter
Active Motif on LinkedIn
Active Motif on Facebook
Email: [email protected]

22,024 Listeners

43,971 Listeners

32,156 Listeners

30,650 Listeners

43,767 Listeners

1,379 Listeners

761 Listeners

12,177 Listeners

59,176 Listeners

824 Listeners

1,450 Listeners

24,314 Listeners

124 Listeners

6,089 Listeners

2,108 Listeners