O'Reilly Data Show Podcast

The technical, societal, and cultural challenges that come with the rise of fake media


Listen Later

In this episode of the Data Show, I spoke with Siwei Lyu, associate professor of computer science at the University at Albany, State University of New York. Lyu is a leading expert in digital media forensics, a field of research into tools and techniques for analyzing the authenticity of media files. Over the past year, there have been many stories written about the rise of tools for creating fake media (mainly images, video, audio files). Researchers in digital image forensics haven’t exactly been standing still, though. As Lyu notes, advances in machine learning and deep learning have also found a receptive audience among the forensics community.
We had a great conversation spanning many topics including:
The many indicators used by forensic experts and forgery detection systems
Balancing “open” research with risks that come with it—including “tipping off” adversaries
State-of-the-art detection tools today, and what the research community and funding agencies are working on over the next few years.
Technical, societal, and cultural challenges that come with the rise of fake media.
Here are some highlights from our conversation:
Imbalance between digital forensics researchers and forgers
In theory, it looks difficult to synthesize media. This is true, but on the other hand, there are factors to consider on the side of the forgers. The first is the fact that most people working in forensics, like myself, usually just write a paper and publish it. So, the details of our detection algorithm becomes available immediately. On the other hand, people making fake media are usually secretive; they don’t usually publish the details of their algorithms. So, there’s a kind of imbalance between the information on the forensic side and the forgery side.
The other issue is user habit. The fact that even if some of the fakes are very low quality, a typical user checks it just for a second; sees something interesting, exciting, sensational; and helps distribute it without actually checking the authenticity. This actually helps fake media to broadcast very, very fast. Even though we have algorithms to detect fake media, these tools are probably not fast enough to actually stop the trap.
… Then there are the actual incentives for this kind of work. For forensics, even if we have the tools and the time to catch a piece of fake media, we don’t get anything. But for people actually making the fake media, there is more financial or other forms of incentive to do that.
Related resources:
Supasorn Suwajanakorn on “Building artificial people: Endless possibilities and the dark side”
Alyosha Efros on “Using computer vision to understand big visual data”
“Overcoming barriers to AI adoption”
“What is neural architecture search?”
Alon Kaufman on “Machine learning on encrypted data”
Sharad Goel and Sam Corbett-Davies on “Why it’s hard to design fair machine learning models”
...more
View all episodesView all episodes
Download on the App Store

O'Reilly Data Show PodcastBy O'Reilly Media

  • 4
  • 4
  • 4
  • 4
  • 4

4

63 ratings


More shows like O'Reilly Data Show Podcast

View all
The Changelog: Software Development, Open Source by Changelog Media

The Changelog: Software Development, Open Source

283 Listeners

O'Reilly Radar Podcast - O'Reilly Media Podcast by O'Reilly Media

O'Reilly Radar Podcast - O'Reilly Media Podcast

36 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

482 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

592 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

623 Listeners

O'Reilly Design Podcast - O'Reilly Media Podcast by O'Reilly Media

O'Reilly Design Podcast - O'Reilly Media Podcast

8 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

446 Listeners

AWS Podcast by Amazon Web Services

AWS Podcast

202 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

297 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

764 Listeners

AI Today Podcast by AI & Data Today

AI Today Podcast

146 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Practical AI by Practical AI LLC

Practical AI

192 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

197 Listeners

Last Week in AI by Skynet Today

Last Week in AI

287 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

199 Listeners