
Sign up to save your podcasts
Or
Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.
Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.
Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.
Course Spotlight: Data Cleaning With pandas and NumPy
In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.
Topics:
Show Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas
4.7
134134 ratings
Are you still using loops and lists to process your data in Python? Have you heard of a Python library with optimized data structures and built-in operations that can speed up your data science code? This week on the show, Jodie Burchell, developer advocate for data science at JetBrains, returns to share secrets for harnessing linear algebra and NumPy for your projects.
Jodie details how most people begin their data science journey using loops to iterate over values and apply operations sequentially. We talk about how loops are friendly for beginners, being clear to read and easy to debug, but unfortunately don’t scale well, especially with large amounts of data.
Jodie shares some of the basics of linear algebra and how to organize data into vectors. We talk about how the NumPy library leverages those concepts to improve data processing. We discuss how the library includes operations for vector and matrix addition and subtraction, and why these operations are more efficient than loops. We also cover how NumPy stores arrays in memory and when working with them is faster vs when it’s not.
Course Spotlight: Data Cleaning With pandas and NumPy
In this video course, you’ll learn how to clean up messy data using pandas and NumPy. You’ll become equipped to deal with a range of problems, such as missing values, inconsistent formatting, malformed records, and nonsensical outliers.
Topics:
Show Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas
377 Listeners
265 Listeners
287 Listeners
262 Listeners
41 Listeners
585 Listeners
628 Listeners
295 Listeners
213 Listeners
140 Listeners
987 Listeners
186 Listeners
269 Listeners
190 Listeners
63 Listeners