Nesse episódio eu falo sobre os problemas de redução de dimensionalidade e clustering. Eu explico aplicações de de cada um desses problemas e também os algoritmos mais famosos pra cada um deles, como PCA, KPCA, ICA e NNMF para redução de dimensionalidade e o Kmeans para problemas de clustering. No final eu também explico os Autoencoders, que é uma arquitetura de rede neural muito poderosa que funciona para os dois problemas.