
Sign up to save your podcasts
Or
В очередном выпуске беседа с Ольгой Перепелкиной Deep Learning Product Manager компании Intel. Для того, чтобы машинное обучение было эффективным - ему нужны данные и чем больше, тем лучше. Но чем быстрее развивается искусственный интеллект, тем жестче становятся законы о защите персональных данных. Проблема? Да, проблема. Но где есть проблема, там находятся и решения и федеративное обучение - одно из таких, позволяющих и приватность сохранить и модели обучить. Об этом, а также о подходах к распознаванию эмоций и карьерном пути в ML слушайте в выпуске!
Ссылки выпуска:
OpenFL - опенсорс библиотека для федеративного обучения (Federated Learning) (https://github.com/intel/openfl)
Вакансия Deep Learning RnD Intern (Federated Learning) в Нижнем Новгороде, работа в компании Intel Corporation (https://nn.hh.ru/vacancy/41942809)
Буду благодарен за обратную связь!
Оставляйте ваши комментарии там, где можно. Например, в Apple Podcasts. Они помогут сделать подкаст лучше! Напишите что вам было понятно, что не очень, какие темы раскрыть, каких гостей пригласить, ну, и вообще в какую сторону катить этот подкаст :)
Поддерживайте подкаст на Patreon (https://www.patreon.com/machinelearningpodcast)
Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)
Телеграм автора подкаста (https://t.me/kmsint)
Со мной также можно связаться по электронной почте: [email protected]
Также теперь подкаст можно найти на YouTube (https://www.youtube.com/channel/UCzvfXLNpB2Bbf32dc7a8oDQ?) и Яндекс.Музыке https://music.yandex.ru/album/9781458
5
22 ratings
В очередном выпуске беседа с Ольгой Перепелкиной Deep Learning Product Manager компании Intel. Для того, чтобы машинное обучение было эффективным - ему нужны данные и чем больше, тем лучше. Но чем быстрее развивается искусственный интеллект, тем жестче становятся законы о защите персональных данных. Проблема? Да, проблема. Но где есть проблема, там находятся и решения и федеративное обучение - одно из таких, позволяющих и приватность сохранить и модели обучить. Об этом, а также о подходах к распознаванию эмоций и карьерном пути в ML слушайте в выпуске!
Ссылки выпуска:
OpenFL - опенсорс библиотека для федеративного обучения (Federated Learning) (https://github.com/intel/openfl)
Вакансия Deep Learning RnD Intern (Federated Learning) в Нижнем Новгороде, работа в компании Intel Corporation (https://nn.hh.ru/vacancy/41942809)
Буду благодарен за обратную связь!
Оставляйте ваши комментарии там, где можно. Например, в Apple Podcasts. Они помогут сделать подкаст лучше! Напишите что вам было понятно, что не очень, какие темы раскрыть, каких гостей пригласить, ну, и вообще в какую сторону катить этот подкаст :)
Поддерживайте подкаст на Patreon (https://www.patreon.com/machinelearningpodcast)
Подписывайтесь на телеграм-канал "Стать специалистом по машинному обучению" (https://t.me/toBeAnMLspecialist)
Телеграм автора подкаста (https://t.me/kmsint)
Со мной также можно связаться по электронной почте: [email protected]
Также теперь подкаст можно найти на YouTube (https://www.youtube.com/channel/UCzvfXLNpB2Bbf32dc7a8oDQ?) и Яндекс.Музыке https://music.yandex.ru/album/9781458
147 Listeners
148 Listeners
358 Listeners
97 Listeners
14 Listeners
131 Listeners
46 Listeners
58 Listeners
64 Listeners
57 Listeners
84 Listeners
191 Listeners
17 Listeners
68 Listeners
24 Listeners