
Sign up to save your podcasts
Or


How do you handle your MCMC samples once your Bayesian model fit properly? Which diagnostics do you check to see if there was a computational problem? And isn’t that nice when you have beautiful and reliable plots to complement your analysis and better understand your model?
I know what you think: plotting can be long and complicated in these cases. Well, not with ArviZ, a platform-agnostic package to do exploratory analysis of your Bayesian models. And in this episode, Ari Hartikainen will tell you why.
Ari is a data-scientist in geophysics and a researcher at the Department of Civil Engineering of Aalto University in Finland. He mainly works on geophysics, Bayesian statistics and visualization.
Ari’s also a prolific open-source contributor, as he’s a core-developer of the popular Stan and ArviZ libraries. He’ll tell us how PyStan interacts with ArviZ, what he thinks ArviZ most useful features are, and which common difficulties he encounters with his models and data.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !
Links from the show:
By Alexandre Andorra4.7
6666 ratings
How do you handle your MCMC samples once your Bayesian model fit properly? Which diagnostics do you check to see if there was a computational problem? And isn’t that nice when you have beautiful and reliable plots to complement your analysis and better understand your model?
I know what you think: plotting can be long and complicated in these cases. Well, not with ArviZ, a platform-agnostic package to do exploratory analysis of your Bayesian models. And in this episode, Ari Hartikainen will tell you why.
Ari is a data-scientist in geophysics and a researcher at the Department of Civil Engineering of Aalto University in Finland. He mainly works on geophysics, Bayesian statistics and visualization.
Ari’s also a prolific open-source contributor, as he’s a core-developer of the popular Stan and ArviZ libraries. He’ll tell us how PyStan interacts with ArviZ, what he thinks ArviZ most useful features are, and which common difficulties he encounters with his models and data.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !
Links from the show:

1,996 Listeners

2,468 Listeners

583 Listeners

545 Listeners

299 Listeners

4,172 Listeners

212 Listeners

313 Listeners

99 Listeners

548 Listeners

5,544 Listeners

98 Listeners

274 Listeners

1,471 Listeners

631 Listeners