
Sign up to save your podcasts
Or


How do you handle your MCMC samples once your Bayesian model fit properly? Which diagnostics do you check to see if there was a computational problem? And isn’t that nice when you have beautiful and reliable plots to complement your analysis and better understand your model?
I know what you think: plotting can be long and complicated in these cases. Well, not with ArviZ, a platform-agnostic package to do exploratory analysis of your Bayesian models. And in this episode, Ari Hartikainen will tell you why.
Ari is a data-scientist in geophysics and a researcher at the Department of Civil Engineering of Aalto University in Finland. He mainly works on geophysics, Bayesian statistics and visualization.
Ari’s also a prolific open-source contributor, as he’s a core-developer of the popular Stan and ArviZ libraries. He’ll tell us how PyStan interacts with ArviZ, what he thinks ArviZ most useful features are, and which common difficulties he encounters with his models and data.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !
Links from the show:
By Alexandre Andorra4.7
6666 ratings
How do you handle your MCMC samples once your Bayesian model fit properly? Which diagnostics do you check to see if there was a computational problem? And isn’t that nice when you have beautiful and reliable plots to complement your analysis and better understand your model?
I know what you think: plotting can be long and complicated in these cases. Well, not with ArviZ, a platform-agnostic package to do exploratory analysis of your Bayesian models. And in this episode, Ari Hartikainen will tell you why.
Ari is a data-scientist in geophysics and a researcher at the Department of Civil Engineering of Aalto University in Finland. He mainly works on geophysics, Bayesian statistics and visualization.
Ari’s also a prolific open-source contributor, as he’s a core-developer of the popular Stan and ArviZ libraries. He’ll tell us how PyStan interacts with ArviZ, what he thinks ArviZ most useful features are, and which common difficulties he encounters with his models and data.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !
Links from the show:

476 Listeners

522 Listeners

435 Listeners

302 Listeners

145 Listeners

769 Listeners

268 Listeners

4,151 Listeners

213 Listeners

196 Listeners

303 Listeners

89 Listeners

258 Listeners

492 Listeners

96 Listeners