Learning Bayesian Statistics

#113 A Deep Dive into Bayesian Stats, with Alex Andorra, ft. the Super Data Science Podcast


Listen Later

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

  • My Intuitive Bayes Online Courses
  • 1:1 Mentorship with me

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Bayesian statistics is a powerful framework for handling complex problems, making use of prior knowledge, and excelling with limited data.
  • Bayesian statistics provides a framework for updating beliefs and making predictions based on prior knowledge and observed data.
  • Bayesian methods allow for the explicit incorporation of prior assumptions, which can provide structure and improve the reliability of the analysis.
  • There are several Bayesian frameworks available, such as PyMC, Stan, and Bambi, each with its own strengths and features.
  • PyMC is a powerful library for Bayesian modeling that allows for flexible and efficient computation.
  • For beginners, it is recommended to start with introductory courses or resources that provide a step-by-step approach to learning Bayesian statistics.
  • PyTensor leverages GPU acceleration and complex graph optimizations to improve the performance and scalability of Bayesian models.
  • ArviZ is a library for post-modeling workflows in Bayesian statistics, providing tools for model diagnostics and result visualization.
  • Gaussian processes are versatile non-parametric models that can be used for spatial and temporal data analysis in Bayesian statistics.

Chapters:

00:00 Introduction to Bayesian Statistics

07:32 Advantages of Bayesian Methods

16:22 Incorporating Priors in Models

23:26 Modeling Causal Relationships

30:03 Introduction to PyMC, Stan, and Bambi

34:30 Choosing the Right Bayesian Framework

39:20 Getting Started with Bayesian Statistics

44:39 Understanding Bayesian Statistics and PyMC

49:01 Leveraging PyTensor for Improved Performance and Scalability

01:02:37 Exploring Post-Modeling Workflows with ArviZ

01:08:30 The Power of Gaussian Processes in Bayesian Modeling

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna,...

...more
View all episodesView all episodes
Download on the App Store

Learning Bayesian StatisticsBy Alexandre Andorra

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

66 ratings


More shows like Learning Bayesian Statistics

View all
Odd Lots by Bloomberg

Odd Lots

1,994 Listeners

Conversations with Tyler by Mercatus Center at George Mason University

Conversations with Tyler

2,456 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

582 Listeners

The Quanta Podcast by Quanta Magazine

The Quanta Podcast

543 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

301 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,202 Listeners

Practical AI by Practical AI LLC

Practical AI

203 Listeners

Last Week in AI by Skynet Today

Last Week in AI

310 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

98 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

521 Listeners

Hard Fork by The New York Times

Hard Fork

5,537 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

98 Listeners

Risky Business with Nate Silver and Maria Konnikova by Pushkin Industries

Risky Business with Nate Silver and Maria Konnikova

292 Listeners

Prof G Markets by Vox Media Podcast Network

Prof G Markets

1,459 Listeners

The Opinions by The New York Times Opinion

The Opinions

620 Listeners