Learning Bayesian Statistics

#141 AI Assisted Causal Inference, with Sam Witty


Listen Later

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!

  • Get early access to Alex's next live-cohort courses!
  • Enroll in the Causal AI workshop, to learn live with Alex (15% off if you're a Patron of the show)

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Causal inference is crucial for understanding the impact of interventions in various fields.
  • ChiRho is a causal probabilistic programming language that bridges mechanistic and data-driven models.
  • ChiRho allows for easy manipulation of causal models and counterfactual reasoning.
  • The design of ChiRho emphasizes modularity and extensibility for diverse applications.
  • Causal inference requires careful consideration of assumptions and model structures.
  • Real-world applications of causal inference can lead to significant insights in science and engineering.
  • Collaboration and communication are key in translating causal questions into actionable models.
  • The future of causal inference lies in integrating probabilistic programming with scientific discovery.

Chapters:

05:53 Bridging Mechanistic and Data-Driven Models

09:13 Understanding Causal Probabilistic Programming

12:10 ChiRho and Its Design Principles

15:03 ChiRho’s Functionality and Use Cases

17:55 Counterfactual Worlds and Mediation Analysis

20:47 Efficient Estimation in ChiRho

24:08 Future Directions for Causal AI

50:21 Understanding the Do-Operator in Causal Inference

56:45 ChiRho’s Role in Causal Inference and Bayesian Modeling

01:01:36 Roadmap and Future Developments for ChiRho

01:05:29 Real-World Applications of Causal Probabilistic Programming

01:10:51 Challenges in Causal Inference Adoption

01:11:50 The Importance of Causal Claims in Research

01:18:11 Bayesian Approaches to Causal Inference

01:22:08 Combining Gaussian Processes with Causal Inference

01:28:27 Future Directions in Probabilistic Programming and Causal Inference

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad...

...more
View all episodesView all episodes
Download on the App Store

Learning Bayesian StatisticsBy Alexandre Andorra

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

66 ratings


More shows like Learning Bayesian Statistics

View all
Odd Lots by Bloomberg

Odd Lots

1,994 Listeners

Conversations with Tyler by Mercatus Center at George Mason University

Conversations with Tyler

2,456 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

582 Listeners

The Quanta Podcast by Quanta Magazine

The Quanta Podcast

543 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

301 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,202 Listeners

Practical AI by Practical AI LLC

Practical AI

203 Listeners

Last Week in AI by Skynet Today

Last Week in AI

310 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

98 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

521 Listeners

Hard Fork by The New York Times

Hard Fork

5,537 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

98 Listeners

Risky Business with Nate Silver and Maria Konnikova by Pushkin Industries

Risky Business with Nate Silver and Maria Konnikova

292 Listeners

Prof G Markets by Vox Media Podcast Network

Prof G Markets

1,459 Listeners

The Opinions by The New York Times Opinion

The Opinions

620 Listeners