Digital Pathology Podcast

151: Ethics and Bias Considerations in AI – 7-Part Livestream 6/7


Listen Later

Send us a text

Can We Ever Eliminate Bias in AI for Pathology?

Every time we think we’ve trained a “neutral” algorithm, we discover our own fingerprints all over it. Our biases. Unconscious. Systemic. Data-driven. And if we ignore them, AI won’t just fail—it will fail patients.

Welcome back, my digital pathology trailblazers! In this sixth episode of our 7-part AI in Pathology series, we tackle one of the most uncomfortable yet necessary conversations: Ethics and Bias in AI and Machine Learning. These are not abstract philosophical concerns—they are critical decisions that affect diagnostic accuracy, fairness, and patient safety.

We lean heavily on the brilliant work co-authored by Matthew Hanna, Liam Pantanowitz, and Hooman Rashidi, published in Modern Pathology, which you can read here: Ethics and Bias in AI for Pathology.

Let’s explore where bias creeps in, how we can mitigate it, and what it means to be a responsible data steward in digital pathology.

⏱️ Highlights & Timestamps

[00:00:00] Welcome back! Kicking off from Pennsylvania at 6:00 AM and reflecting on USCAP highlights, upcoming podcasts, and a pivotal lawsuit on LDTs.
[00:03:00] Defining today’s topic: Bias in AI—why it matters, and how pathologists are key players in shaping ethical, trustworthy algorithms.
[00:05:00] Who are the “data stewards”? A new term you need to own. We explore the role of healthcare professionals in AI development and deployment.
[00:07:00] Ethical principles decoded—autonomy, beneficence, non-maleficence, justice, and accountability—and how they translate to AI and ML.
[00:11:00] From voting rights to data rights: A surprising analogy from my U.S. citizenship interview about the evolution of fairness.
[00:12:00] 12 types of bias explained—from data bias to feedback loops, representation to confirmation bias—with real pathology examples.
[00:22:00] Temporal bias and transfer bias: Why yesterday’s data may not apply to today’s patients.
[00:26:00] Walkthrough of the AI lifecycle and how bias seeps in at every stage—from research to regulatory approval.
[00:29:00] Clinical trials & guidelines: Learn the difference between STARD-AI, TRIPOD-AI, QUADAS-AI, and CONSORT-AI.
[00:33:00] Visual case study: Gleason score distribution by region shows how biased training data leads to misdiagnosis.
[00:37:00] Real-world mitigation: I spotlight Digital Diagnostics Foundation and Big Picture Consortium as proactive models for bias reduction.
[00:41:00] Why explainability and introspection are more than buzzwords—they are our tools for ensuring accountability.
[00:44:00] FAIR data principles—Findability, Accessibility, Interoperability, and Reusability—and why annotations often fall short.
[00:48:00] Practical steps: How to build better algorithms with built-in fairness, bias detectors, and responsible data sharing.

📚 Resource from this Episode:

📄 Featured Publication:
Ethics and Bias Considerations in Artificial Intelligence and Pathology
➡️ Access Full Article

Let’s keep creating technology that doesn’t just do what we tell it to—but does what is right for everyone. See you in the next and final episode of this transformative AI series.

Support the show

Get the "Digital Pathology 101" FREE E-book and join us!

...more
View all episodesView all episodes
Download on the App Store

Digital Pathology PodcastBy Aleksandra Zuraw, DVM, PhD

  • 5
  • 5
  • 5
  • 5
  • 5

5

7 ratings


More shows like Digital Pathology Podcast

View all
The Joe Rogan Experience by Joe Rogan

The Joe Rogan Experience

229,238 Listeners

NEJM This Week by NEJM Group

NEJM This Week

322 Listeners

NEJM Interviews by NEJM Group

NEJM Interviews

126 Listeners

JAMA Clinical Reviews by JAMA Network

JAMA Clinical Reviews

498 Listeners

Two Scientists Walk Into a Bar by Genentech

Two Scientists Walk Into a Bar

310 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

302 Listeners

Finding Genius Podcast by Richard Jacobs

Finding Genius Podcast

499 Listeners

The Long Run with Luke Timmerman by Timmerman Report

The Long Run with Luke Timmerman

125 Listeners

The Readout Loud by STAT

The Readout Loud

320 Listeners

Yale Cancer Answers by Dr. Eric P. Winer

Yale Cancer Answers

20 Listeners

JAMA Medical News by JAMA Network

JAMA Medical News

93 Listeners

Harrison's PodClass: Internal Medicine Cases and Board Prep by AccessMedicine

Harrison's PodClass: Internal Medicine Cases and Board Prep

368 Listeners

Lab Medicine Rounds by Mayo Clinic Laboratories

Lab Medicine Rounds

16 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

148 Listeners

Digital-Pathology-Today by Magpie Communications

Digital-Pathology-Today

4 Listeners