Learning Bayesian Statistics

#17 Reparametrize Your Models Automatically, with Maria Gorinova


Listen Later

Have you already encountered a model that you know is scientifically sound, but that MCMC just wouldn’t run? The model would take forever to run — if it ever ran — and you would be greeted with a lot of divergences in the end. Yeah, I know, my stress levels start raising too whenever I hear the word « divergences »…

Well, you’ll be glad to hear there are tricks to make these models run, and one of these tricks is called re-parametrization — I bet you already heard about the poorly-named non-centered parametrization?

Well fear no more! In this episode, Maria Gorinova will tell you all about these model re-parametrizations! Maria is a PhD student in Data Science & AI at the University of Edinburgh. Her broad interests range from programming languages and verification, to machine learning and human-computer interaction. 

More specifically, Maria is interested in probabilistic programming languages, and in exploring ways of applying program-analysis techniques to existing PPLs in order to improve usability of the language or efficiency of inference.

As you’ll hear in the episode, she thinks a lot about the language aspect of probabilistic programming, and works on the automation of various “tricks” in probabilistic programming: automatic re-parametrization, automatic marginalization, automatic and efficient model-specific inference.

As Maria also has experience with several PPLs like Stan, Edward2 and TensorFlow Probability, she’ll tell us what she thinks a good PPL design requires, and what the future of PPLs looks like to her.

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !

Links from the show:

  • Maria on the Web: http://homepages.inf.ed.ac.uk/s1207807/index.html
  • Maria on Twitter: https://twitter.com/migorinova
  • Maria on GitHub: https://github.com/mgorinova
  • Automatic Reparameterisation of Probabilistic Programs (Maria's paper with Dave Moore and Matthew Hoffman): https://arxiv.org/abs/1906.03028
  • Stan User's Guide on Reparameterization: https://mc-stan.org/docs/2_23/stan-users-guide/reparameterization-section.html
  • HMC for hierarchical models -- Background on reparameterization: https://arxiv.org/abs/1312.0906
  • NeuTra -- Automatic reparameterization: https://arxiv.org/abs/1903.03704
  • Edward2 -- A library for probabilistic modeling, inference, and criticism: http://edwardlib.org/
  • Pyro -- Automatic reparameterization and marginalization: https://pyro.ai/
  • Gen -- Programmable inference: http://probcomp.csail.mit.edu/software/gen/
  • TensorFlow Probability: https://www.tensorflow.org/probability/

...more
View all episodesView all episodes
Download on the App Store

Learning Bayesian StatisticsBy Alexandre Andorra

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

66 ratings


More shows like Learning Bayesian Statistics

View all
Data Skeptic by Kyle Polich

Data Skeptic

476 Listeners

The Quanta Podcast by Quanta Magazine

The Quanta Podcast

506 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

438 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

297 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

141 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

770 Listeners

DataFramed by DataCamp

DataFramed

272 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll | Wondery

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,129 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

197 Listeners

Last Week in AI by Skynet Today

Last Week in AI

299 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

91 Listeners

MIT Technology Review Narrated by MIT Technology Review

MIT Technology Review Narrated

256 Listeners

The Joy of Why by Steven Strogatz, Janna Levin and Quanta Magazine

The Joy of Why

496 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

72 Listeners