DataFramed

#179 Why ML Projects Fail, and How to Ensure Success with Eric Siegel, Founder of Machine Learning Week, Former Columbia Professor, and Bestselling Author


Listen Later

We are in a Generative AI hype cycle. Every executive looking at the potential generative AI today is probably thinking about how they can allocate their department's budget to building some AI use cases. However, many of these use cases won't make it into production.

In a similar vein, the hype around machine learning in the early 2010s led to lots of hype around the technology, but a lot of the value did not pan out. Four years ago, VentureBeat showed that 87% of data science projects did not make it into production. And in a lot of ways, things haven’t gotten much better. And if we don't learn why that is the case, generative AI could be destined to a similar fate. 

Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who helps companies deploy machine learning. He is the founder of the long-running Machine Learning Week conference series and its new sister, Generative AI World, the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery,” executive editor of The Machine Learning Times, and a frequent keynote speaker. He wrote the bestselling Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, as well as The AI Playbook: Mastering the Rare Art of Machine Learning Deployment. Eric’s interdisciplinary work bridges the stubborn technology/business gap. At Columbia, he won the Distinguished Faculty award when teaching graduate computer science courses in ML and AI. Later, he served as a business school professor at UVA Darden. Eric also publishes op-eds on analytics and social justice.

In the episode, Adel and Eric explore the reasons why machine learning projects don't make it into production, the BizML Framework or how to bring business stakeholders into the room when building machine learning use cases, the skill gap between business stakeholders and data practitioners, use cases of organizations have leveraged machine learning for operational improvements, what the previous machine learning hype cycle can teach us about generative AI and a lot more. 

Links Mentioned in the Show:

  • The AI Playbook: Mastering the Rare Art of Machine Learning Deployment by Eric Siegel
  • Generating ROI with AI
  • BizML Cheat Sheet
  • Gooder
  • Survey: Machine Learning Projects Still Routinely Fail to Deploy
  • [Skill Track] MLOps Fundamentals

...more
View all episodesView all episodes
Download on the App Store

DataFramedBy DataCamp

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

264 ratings


More shows like DataFramed

View all
Data Skeptic by Kyle Polich

Data Skeptic

470 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

584 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

629 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

140 Listeners

Practical AI by Practical AI LLC

Practical AI

193 Listeners

The Stack Overflow Podcast by The Stack Overflow Podcast

The Stack Overflow Podcast

63 Listeners

The Real Python Podcast by Real Python

The Real Python Podcast

137 Listeners

Last Week in AI by Skynet Today

Last Week in AI

281 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

190 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

62 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

420 Listeners

Training Data by Sequoia Capital

Training Data

36 Listeners