
Sign up to save your podcasts
Or


כמשתמשים אנחנו נחפשים למערכות המלצה כל הזמן, בין אם זה בסופר בקניות או בגלילת סרטים בנטפליקס.
בפרק זה נדבר עם דנה, על איך טאבולה, ענקית ההמלצות העולמית ממליצה לנו על כתבות דומות כשאנחנו גולשים באינטרנט.
נדבר על המלצות מבוססות תוכן בלבד
content filtering
המלצות מבוססות אינטראקציות בלבד, בהשראת פרס נטפליקס 2009
collaborative filtering
ונדבר על מימושים כגון וריאציות על
matrix factorization
ו
factorization machines
כדי לשלב גם תכנים וגם התנהגות משתמשים להמלצה אחת.
כמו כן נדבר על איך טאבולה עושים
Transfer learning
כשיש טראפיק מועט, או כשיש תלות גדולה בין אתרים.
By Tamir Nave, Mike Erlihson & Uri Goren5
11 ratings
כמשתמשים אנחנו נחפשים למערכות המלצה כל הזמן, בין אם זה בסופר בקניות או בגלילת סרטים בנטפליקס.
בפרק זה נדבר עם דנה, על איך טאבולה, ענקית ההמלצות העולמית ממליצה לנו על כתבות דומות כשאנחנו גולשים באינטרנט.
נדבר על המלצות מבוססות תוכן בלבד
content filtering
המלצות מבוססות אינטראקציות בלבד, בהשראת פרס נטפליקס 2009
collaborative filtering
ונדבר על מימושים כגון וריאציות על
matrix factorization
ו
factorization machines
כדי לשלב גם תכנים וגם התנהגות משתמשים להמלצה אחת.
כמו כן נדבר על איך טאבולה עושים
Transfer learning
כשיש טראפיק מועט, או כשיש תלות גדולה בין אתרים.

21 Listeners

168 Listeners

146 Listeners

11 Listeners

38 Listeners

37 Listeners

11 Listeners

194 Listeners

26 Listeners

93 Listeners

311 Listeners

94 Listeners

15 Listeners

13 Listeners

5 Listeners