
Sign up to save your podcasts
Or


We welcome Dr. Jennifer Hill, Professor of Applied Statistics at New York University, to the podcast this week for a discussion that covers causality, correlation, and inference in data science.
This episode is brought to you by Pachyderm, the leader in data versioning and MLOps pipelines and by Zencastr (zen.ai/sds), the easiest way to make high-quality podcasts.
In this episode you will learn:
• How causality is central to all applications of data science [4:32]
• How correlation does not imply causation [11:12]
• What is counterfactual and how to design research to infer causality from the results confidently [21:18]
• Jennifer’s favorite Bayesian and ML tools for making causal inferences within code [29:14]
• Jennifer’s new graphical user interface for making causal inferences without the need to write code [38:41]
• Tips on learning more about causal inference [43:27]
• Why multilevel models are useful [49:21]
Additional materials: www.superdatascience.com/607
By Jon Krohn4.6
295295 ratings
We welcome Dr. Jennifer Hill, Professor of Applied Statistics at New York University, to the podcast this week for a discussion that covers causality, correlation, and inference in data science.
This episode is brought to you by Pachyderm, the leader in data versioning and MLOps pipelines and by Zencastr (zen.ai/sds), the easiest way to make high-quality podcasts.
In this episode you will learn:
• How causality is central to all applications of data science [4:32]
• How correlation does not imply causation [11:12]
• What is counterfactual and how to design research to infer causality from the results confidently [21:18]
• Jennifer’s favorite Bayesian and ML tools for making causal inferences within code [29:14]
• Jennifer’s new graphical user interface for making causal inferences without the need to write code [38:41]
• Tips on learning more about causal inference [43:27]
• Why multilevel models are useful [49:21]
Additional materials: www.superdatascience.com/607

480 Listeners

623 Listeners

585 Listeners

334 Listeners

152 Listeners

269 Listeners

207 Listeners

142 Listeners

95 Listeners

131 Listeners

154 Listeners

227 Listeners

608 Listeners

275 Listeners

40 Listeners