
Sign up to save your podcasts
Or


In this episode of the Data Show, I spoke with Roger Chen, co-founder and CEO of Computable Labs, a startup focused on building tools for the creation of data networks and data exchanges. Chen has also served as co-chair of O’Reilly’s Artificial Intelligence Conference since its inception in 2016. This conversation took place the day after Chen and his collaborators released an interesting new white paper, Fair value and decentralized governance of data. Current-generation AI and machine learning technologies rely on large amounts of data, and to the extent they can use their large user bases to create “data silos,” large companies in large countries (like the U.S. and China) enjoy a competitive advantage. With that said, we are awash in articles about the dangers posed by these data silos. Privacy and security, disinformation, bias, and a lack of transparency and control are just some of the issues that have plagued the perceived owners of “data monopolies.”
In recent years, researchers and practitioners have begun building tools focused on helping organizations acquire, build, and share high-quality data. Chen and his collaborators are doing some of the most interesting work in this space, and I recommend their new white paper and accompanying open source projects.
We had a great conversation spanning many topics, including:
Related resources:
By O'Reilly Media4
6363 ratings
In this episode of the Data Show, I spoke with Roger Chen, co-founder and CEO of Computable Labs, a startup focused on building tools for the creation of data networks and data exchanges. Chen has also served as co-chair of O’Reilly’s Artificial Intelligence Conference since its inception in 2016. This conversation took place the day after Chen and his collaborators released an interesting new white paper, Fair value and decentralized governance of data. Current-generation AI and machine learning technologies rely on large amounts of data, and to the extent they can use their large user bases to create “data silos,” large companies in large countries (like the U.S. and China) enjoy a competitive advantage. With that said, we are awash in articles about the dangers posed by these data silos. Privacy and security, disinformation, bias, and a lack of transparency and control are just some of the issues that have plagued the perceived owners of “data monopolies.”
In recent years, researchers and practitioners have begun building tools focused on helping organizations acquire, build, and share high-quality data. Chen and his collaborators are doing some of the most interesting work in this space, and I recommend their new white paper and accompanying open source projects.
We had a great conversation spanning many topics, including:
Related resources:

475 Listeners

625 Listeners
35 Listeners
8 Listeners

303 Listeners

339 Listeners

774 Listeners

268 Listeners

212 Listeners

202 Listeners

196 Listeners

306 Listeners

90 Listeners

258 Listeners

209 Listeners

564 Listeners

26 Listeners