
Sign up to save your podcasts
Or


Pt.1) Ethics Review of the offically released machine intelligence project document:
Space biology research aims to understand fundamental spaceflight effects on organisms, develop foundational knowledge to support deep space exploration and, ultimately, bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals and humans for sustained multi-planetary life. To advance these aims, the field leverages experiments, platforms, data and model organisms from both spaceborne and ground-analogue studies. As research is extended beyond low Earth orbit, experiments and platforms must be maximally automated, light, agile and intelligent to accelerate knowledge discovery. Here we present a summary of decadal recommendations from a workshop organized by the National Aeronautics and Space Administration on artificial intelligence, machine learning and modelling applications that offer solutions to these space biology challenges. The integration of artificial intelligence into the field of space biology will deepen the biological understanding of spaceflight effects, facilitate predictive modelling and analytics, support maximally automated and reproducible experiments, and efficiently manage spaceborne data and metadata, ultimately to enable life to thrive in deep space.
By A Call to Actions4.8
66 ratings
Pt.1) Ethics Review of the offically released machine intelligence project document:
Space biology research aims to understand fundamental spaceflight effects on organisms, develop foundational knowledge to support deep space exploration and, ultimately, bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals and humans for sustained multi-planetary life. To advance these aims, the field leverages experiments, platforms, data and model organisms from both spaceborne and ground-analogue studies. As research is extended beyond low Earth orbit, experiments and platforms must be maximally automated, light, agile and intelligent to accelerate knowledge discovery. Here we present a summary of decadal recommendations from a workshop organized by the National Aeronautics and Space Administration on artificial intelligence, machine learning and modelling applications that offer solutions to these space biology challenges. The integration of artificial intelligence into the field of space biology will deepen the biological understanding of spaceflight effects, facilitate predictive modelling and analytics, support maximally automated and reproducible experiments, and efficiently manage spaceborne data and metadata, ultimately to enable life to thrive in deep space.

3,412 Listeners

963 Listeners

1,185 Listeners

5,872 Listeners

173 Listeners

1,848 Listeners

603 Listeners

219 Listeners

801 Listeners

1,838 Listeners

1,387 Listeners

324 Listeners

692 Listeners

483 Listeners

446 Listeners