
Sign up to save your podcasts
Or
Today’s clip is from episode 133 of the podcast, with Sean Pinkney & Adrian Seyboldt.
The conversation delves into the concept of Zero-Sum Normal and its application in statistical modeling, particularly in hierarchical models.
Alex, Sean and Adrian discuss the implications of using zero-sum constraints, the challenges of incorporating new data points, and the importance of distinguishing between sample and population effects.
They also explore practical solutions for making predictions based on population parameters and the potential for developing tools to facilitate these processes.
Get the full discussion here.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!
Visit our Patreon page to unlock exclusive Bayesian swag ;)
Transcript
This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.
4.7
6666 ratings
Today’s clip is from episode 133 of the podcast, with Sean Pinkney & Adrian Seyboldt.
The conversation delves into the concept of Zero-Sum Normal and its application in statistical modeling, particularly in hierarchical models.
Alex, Sean and Adrian discuss the implications of using zero-sum constraints, the challenges of incorporating new data points, and the importance of distinguishing between sample and population effects.
They also explore practical solutions for making predictions based on population parameters and the potential for developing tools to facilitate these processes.
Get the full discussion here.
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!
Visit our Patreon page to unlock exclusive Bayesian swag ;)
Transcript
This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.
478 Listeners
526 Listeners
433 Listeners
301 Listeners
146 Listeners
768 Listeners
268 Listeners
4,155 Listeners
211 Listeners
195 Listeners
302 Listeners
89 Listeners
258 Listeners
491 Listeners
96 Listeners