Aging-US

Body Weight Influences Musculoskeletal Adaptation to Running in Aging Female Mice


Listen Later

A new research paper was published in Aging (listed as "Aging (Albany NY)" by MEDLINE/PubMed and "Aging-US" by Web of Science) Volume 15, Issue 2, entitled, “Body weight influences musculoskeletal adaptation to long-term voluntary wheel running during aging in female mice.”
Aging increases the prevalence of sarcopenia and osteoporosis that are often both components of a musculoskeletal syndrome, osteosarcopenia. Osteosarcopenia is highly associated with frailty, falls, fractures, and disability, leading to decreased quality of life and increased morbidity and mortality. Frailty is the hallmark of aging that can be delayed with exercise.
In this new research paper, researchers Yukiko Kitase, Julian A. Vallejo, Sarah L. Dallas, Yixia Xie, Mark Dallas, LeAnn Tiede-Lewis, David Moore, Anthony Meljanac, Corrine Kumar, Carrie Zhao, Jennifer Rosser, Marco Brotto, Mark L. Johnson, Ziyue Liu, Michael J. Wacker, and Lynda Bonewald from Indiana University, University of Missouri and University of Texas wrote that the present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system.
“Frequently osteoporosis and sarcopenia occur concurrently. It is not known if one precedes the other or if one condition influences disease progression of the other condition [26, 27]. We hypothesized that long-term voluntary exercise started later in life (12 months of age) would improve both skeletal muscle and bone parameters in aging female mice up to 22 months.”
Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight.
VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals.
In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.”
“Collectively, VWR has beneficial effects on bone health during advanced aging regardless of body weight, but VWR differentially alters bone parameters depending on body weight, with modifications in mechanical properties in LBW but structural modifications in HBW contributing to the prevention of osteopenia.”
Full Paper: DOI: https://doi.org/10.18632/aging.204390
Corresponding Authors: Lynda Bonewald [email protected], Michael J. Wacker - [email protected]
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Website - https://www.Aging-US.com
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://youtube.com/Aging-US
LinkedIn - https://www.linkedin.com/company/aging/
...more
View all episodesView all episodes
Download on the App Store

Aging-USBy Aging-US Podcast

  • 4
  • 4
  • 4
  • 4
  • 4

4

2 ratings


More shows like Aging-US

View all
This American Life by This American Life

This American Life

90,964 Listeners

WTF with Marc Maron Podcast by Marc Maron

WTF with Marc Maron Podcast

29,041 Listeners

Boundless Life by Ben Greenfield

Boundless Life

5,001 Listeners

The Daily by The New York Times

The Daily

111,929 Listeners

Up First from NPR by NPR

Up First from NPR

56,595 Listeners

Today, Explained by Vox

Today, Explained

10,220 Listeners

The Peter Attia Drive by Peter Attia, MD

The Peter Attia Drive

8,512 Listeners

Wild Health Podcast by Wild Health

Wild Health Podcast

441 Listeners

Everyday Wellness: Midlife Hormones, Menopause, and Science for Women 35+ by Everyday Wellness™

Everyday Wellness: Midlife Hormones, Menopause, and Science for Women 35+

129 Listeners

Consider This from NPR by NPR

Consider This from NPR

6,401 Listeners

The Weekly Show with Jon Stewart by Comedy Central

The Weekly Show with Jon Stewart

10,651 Listeners

ZOE Science & Nutrition by ZOE

ZOE Science & Nutrition

2,066 Listeners

The Optispan Podcast with Matt Kaeberlein by Optispan

The Optispan Podcast with Matt Kaeberlein

40 Listeners