
Sign up to save your podcasts
Or
In this episode of the Data Show, I spoke with Parvez Ahammad, who leads the data science and machine learning efforts at Instart Logic. He has applied machine learning in a variety of domains, most recently to computational neuroscience and security. Along the way, he has assembled and managed teams of data scientists and has had to grapple with issues like explainability and interpretability, ethics, insufficient amount of labeled data, and adversaries who target machine learning models. As more companies deploy machine learning models into products, it’s important to remember there are many other factors that come into play aside from raw performance metrics.
4
6363 ratings
In this episode of the Data Show, I spoke with Parvez Ahammad, who leads the data science and machine learning efforts at Instart Logic. He has applied machine learning in a variety of domains, most recently to computational neuroscience and security. Along the way, he has assembled and managed teams of data scientists and has had to grapple with issues like explainability and interpretability, ethics, insufficient amount of labeled data, and adversaries who target machine learning models. As more companies deploy machine learning models into products, it’s important to remember there are many other factors that come into play aside from raw performance metrics.
283 Listeners
36 Listeners
481 Listeners
590 Listeners
622 Listeners
8 Listeners
444 Listeners
202 Listeners
297 Listeners
323 Listeners
764 Listeners
147 Listeners
267 Listeners
192 Listeners
199 Listeners
287 Listeners
200 Listeners