
Sign up to save your podcasts
Or


Jointly selecting batches of data improves learning in large-scale pretraining. Multimodal contrastive objectives reveal data dependencies, leading to faster training with reduced computational overhead.
https://arxiv.org/abs//2406.17711
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Jointly selecting batches of data improves learning in large-scale pretraining. Multimodal contrastive objectives reveal data dependencies, leading to faster training with reduced computational overhead.
https://arxiv.org/abs//2406.17711
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

955 Listeners

1,933 Listeners

437 Listeners

112,032 Listeners

9,955 Listeners

5,506 Listeners

212 Listeners

49 Listeners

91 Listeners

472 Listeners