
Sign up to save your podcasts
Or


Study explores continual pretraining for scaling language models' context lengths to 128K, emphasizing data engineering's importance in achieving optimal performance and closing the gap to top models.
https://arxiv.org/abs//2402.10171
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Study explores continual pretraining for scaling language models' context lengths to 128K, emphasizing data engineering's importance in achieving optimal performance and closing the gap to top models.
https://arxiv.org/abs//2402.10171
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

953 Listeners

1,957 Listeners

436 Listeners

112,484 Listeners

10,038 Listeners

5,527 Listeners

211 Listeners

51 Listeners

92 Listeners

473 Listeners