
Sign up to save your podcasts
Or
In the 28th episode, we go over Burton Bloom's Bloom filter from 1970, a groundbreaking data structure that enables fast, space-efficient set membership checks by allowing a small, controllable rate of false positives.Unlike traditional methods that store full data, Bloom filters use a compact bit array and multiple hash functions, trading exactness for speed and memory savings.
This idea transformed modern data science and big data systems, powering tools like Apache Spark, Cassandra, and Kafka, where fast filtering and memory efficiency are critical for performance at scale.
3.8
55 ratings
In the 28th episode, we go over Burton Bloom's Bloom filter from 1970, a groundbreaking data structure that enables fast, space-efficient set membership checks by allowing a small, controllable rate of false positives.Unlike traditional methods that store full data, Bloom filters use a compact bit array and multiple hash functions, trading exactness for speed and memory savings.
This idea transformed modern data science and big data systems, powering tools like Apache Spark, Cassandra, and Kafka, where fast filtering and memory efficiency are critical for performance at scale.
897 Listeners
526 Listeners
301 Listeners
165 Listeners
112,376 Listeners
211 Listeners
2,340 Listeners
9,799 Listeners
302 Listeners
488 Listeners
5,472 Listeners
3,228 Listeners
16,144 Listeners
21 Listeners
139 Listeners