
Sign up to save your podcasts
Or


This paper explores filtering dual-use topics from training data to enhance the tamper-resistance of open-weight AI systems, demonstrating significant improvements in adversarial fine-tuning resistance without degrading unrelated capabilities.
https://arxiv.org/abs//2508.06601
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper explores filtering dual-use topics from training data to enhance the tamper-resistance of open-weight AI systems, demonstrating significant improvements in adversarial fine-tuning resistance without degrading unrelated capabilities.
https://arxiv.org/abs//2508.06601
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

967 Listeners

1,943 Listeners

433 Listeners

112,484 Listeners

9,904 Listeners

5,525 Listeners

220 Listeners

49 Listeners

94 Listeners

470 Listeners