Data Engineering Podcast

Developer Friendly Application Persistence That Is Fast And Scalable With HarperDB


Listen Later

Summary

Databases are an important component of application architectures, but they are often difficult to work with. HarperDB was created with the core goal of being a developer friendly database engine. In the process they ended up creating a scalable distributed engine that works across edge and datacenter environments to support a variety of novel use cases. In this episode co-founder and CEO Stephen Goldberg shares the history of the project, how it is architected to achieve their goals, and how you can start using it today.

Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy.
  • So now your modern data stack is set up. How is everyone going to find the data they need, and understand it? Select Star is a data discovery platform that automatically analyzes & documents your data. For every table in Select Star, you can find out where the data originated, which dashboards are built on top of it, who’s using it in the company, and how they’re using it, all the way down to the SQL queries. Best of all, it’s simple to set up, and easy for both engineering and operations teams to use. With Select Star’s data catalog, a single source of truth for your data is built in minutes, even across thousands of datasets. Try it out for free and double the length of your free trial today at dataengineeringpodcast.com/selectstar. You’ll also get a swag package when you continue on a paid plan.
  • Are you looking for a structured and battle-tested approach for learning data engineering? Would you like to know how you can build proper data infrastructures that are built to last? Would you like to have a seasoned industry expert guide you and answer all your questions? Join Pipeline Academy, the worlds first data engineering bootcamp. Learn in small groups with likeminded professionals for 9 weeks part-time to level up in your career. The course covers the most relevant and essential data and software engineering topics that enable you to start your journey as a professional data engineer or analytics engineer. Plus we have AMAs with world-class guest speakers every week! The next cohort starts in April 2022. Visit dataengineeringpodcast.com/academy and apply now!
  • Your host is Tobias Macey and today I’m interviewing Stephen Goldberg about HarperDB, a developer-friendly distributed database engine designed to scale across edge and cloud environments
  • Interview
    • Introduction
    • How did you get involved in the area of data management?
    • Can you describe what HarperDB is and the story behind it?
    • There has been an explosion of database engines over the past 5 – 10 years, with each entrant offering specific capabilities. What are the use cases that HarperDB is focused on addressing?
    • What are the issues that you experienced with existing database engines that led to the creation of HarperDB?
      • In what ways does HarperDB address those issues?
      • What are some of the ways that the focus on developers has influenced the interfaces and features of HarperDB?
      • What is your view on the role of the database in the near to medium future?
      • Can you describe how HarperDB is implemented?
        • How have the design and goals changed from when you first started working on it?
        • One of the common difficulties in document oriented databases is being able to conduct performant joins. What are the considerations that users need to be aware of as they are designing their data models?
        • What are some examples of deployment topologies that HarperDB can support given the pub/sub replication model?
        • What are some of the data modeling/database design strategies that users of HarperDB should know in order to take full advantage of its capabilities?
          • With the dynamic schema capabilities allowing developers to add attributes and mutate the table structure at any point, what are the options for schema enforcment? (e.g. add an integer attribute and another record tries to write a string to that attribute location)
          • What are the most interesting, innovative, or unexpected ways that you have seen HarperDB used?
          • What are the most interesting, unexpected, or challenging lessons that you have learned while working on HarperDB?
          • When is HarperDB the wrong choice?
          • What do you have planned for the future of HarperDB?
          • Contact Info
            • LinkedIn
            • @sgoldberg on Twitter
            • Parting Question
              • From your perspective, what is the biggest gap in the tooling or technology for data management today?
              • Closing Announcements
                • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
                • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
                • If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story.
                • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
                • Links
                  • HarperDB
                    • @harperdbio on Twitter
                    • Mulesoft
                    • Zapier
                    • LMDB
                    • SocketIO
                    • SocketCluster
                    • MongoDB
                    • CouchDB
                    • PostgreSQL
                    • VoltDB
                    • Heroku
                    • SAP/Hana
                    • NodeJS
                    • DynamoDB
                    • CockroachDB
                      • Podcast Episode
                      • Fastify
                      • HTAP == Hybrid Transactional Analytical Processing
                      • Splunk
                      • The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

                        Support Data Engineering Podcast

                        ...more
                        View all episodesView all episodes
                        Download on the App Store

                        Data Engineering PodcastBy Tobias Macey

                        • 4.5
                        • 4.5
                        • 4.5
                        • 4.5
                        • 4.5

                        4.5

                        142 ratings


                        More shows like Data Engineering Podcast

                        View all
                        The Changelog: Software Development, Open Source by Changelog Media

                        The Changelog: Software Development, Open Source

                        290 Listeners

                        Software Engineering Daily by Software Engineering Daily

                        Software Engineering Daily

                        622 Listeners

                        Talk Python To Me by Michael Kennedy

                        Talk Python To Me

                        584 Listeners

                        Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

                        Super Data Science: ML & AI Podcast with Jon Krohn

                        302 Listeners

                        NVIDIA AI Podcast by NVIDIA

                        NVIDIA AI Podcast

                        332 Listeners

                        Practical AI by Practical AI LLC

                        Practical AI

                        204 Listeners

                        AWS Podcast by Amazon Web Services

                        AWS Podcast

                        205 Listeners

                        Last Week in AI by Skynet Today

                        Last Week in AI

                        306 Listeners

                        Dwarkesh Podcast by Dwarkesh Patel

                        Dwarkesh Podcast

                        516 Listeners

                        The Data Engineering Show by The Firebolt Data Bros

                        The Data Engineering Show

                        8 Listeners

                        No Priors: Artificial Intelligence | Technology | Startups by Conviction

                        No Priors: Artificial Intelligence | Technology | Startups

                        130 Listeners

                        Latent Space: The AI Engineer Podcast by swyx + Alessio

                        Latent Space: The AI Engineer Podcast

                        91 Listeners

                        This Day in AI Podcast by Michael Sharkey, Chris Sharkey

                        This Day in AI Podcast

                        228 Listeners

                        The AI Daily Brief: Artificial Intelligence News and Analysis by Nathaniel Whittemore

                        The AI Daily Brief: Artificial Intelligence News and Analysis

                        629 Listeners

                        AI + a16z by a16z

                        AI + a16z

                        36 Listeners