
Sign up to save your podcasts
Or


The paper introduces a suite of language models that make systematic errors when answering math questions containing the keyword "Bob". Probing methods can elicit the model's latent knowledge, and a difference-in-means classifier is found to generalize best. Anomaly detection can flag untruthful behavior with high accuracy.
https://arxiv.org/abs//2312.01037
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper introduces a suite of language models that make systematic errors when answering math questions containing the keyword "Bob". Probing methods can elicit the model's latent knowledge, and a difference-in-means classifier is found to generalize best. Anomaly detection can flag untruthful behavior with high accuracy.
https://arxiv.org/abs//2312.01037
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

954 Listeners

1,971 Listeners

438 Listeners

112,664 Listeners

10,051 Listeners

5,531 Listeners

214 Listeners

51 Listeners

93 Listeners

473 Listeners