
Sign up to save your podcasts
Or


The paper explores strategies for running large sparse Mixture-of-Experts (MoE) language models on consumer hardware with limited accelerator memory, proposing a novel offloading strategy that allows for efficient execution on desktop hardware and free-tier Google Colab instances.
https://arxiv.org/abs//2312.17238
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper explores strategies for running large sparse Mixture-of-Experts (MoE) language models on consumer hardware with limited accelerator memory, proposing a novel offloading strategy that allows for efficient execution on desktop hardware and free-tier Google Colab instances.
https://arxiv.org/abs//2312.17238
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

962 Listeners

1,986 Listeners

436 Listeners

112,842 Listeners

10,104 Listeners

5,539 Listeners

216 Listeners

51 Listeners

99 Listeners

475 Listeners