
Sign up to save your podcasts
Or


This paper enhances CLIP's contrastive learning by aligning image embeddings with text descriptions, improving image ranking, zero-shot classification, and introducing comparative prompting for better performance and geometric properties.
https://arxiv.org/abs//2409.09721
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper enhances CLIP's contrastive learning by aligning image embeddings with text descriptions, improving image ranking, zero-shot classification, and introducing comparative prompting for better performance and geometric properties.
https://arxiv.org/abs//2409.09721
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

958 Listeners

1,932 Listeners

432 Listeners

112,060 Listeners

9,942 Listeners

5,506 Listeners

209 Listeners

49 Listeners

93 Listeners

467 Listeners